scholarly journals Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Wei Liu ◽  
Yu Zhang ◽  
Bin Qiu ◽  
Shoujin Fan ◽  
Hanfeng Ding ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Yuhan Zhang ◽  
Wei Liu ◽  
Di Zhang ◽  
Yanbing Yang ◽  
Xianshu Wang ◽  
...  

This study investigated the effects of foxtail millet whole grain flours obtained through different processing methods on alleviating symptoms and gut microbiota dysbiosis in a dextran sulfate sodium (DSS)-induced murine colitis model. Sixty C57BL/6 mice were divided into six groups (n = 10 in each group), including one control group (CTRL) without DSS treatment and five DSS-treated groups receiving one of the following diets: AIN-93M standard diet (93MD), whole grain foxtail millet flour (FM), fermented (F-FM), germinated (G-FM), and fermented-germinated foxtail millet flour (FG-FM). A comparison of the disease activity index (DAI) demonstrated that foxtail millet whole grain-based diets could alleviate the symptoms of enteritis to varying degrees. In addition, 16S rRNA gene sequencing revealed that FG-FM almost completely alleviated DSS-induced dysbiosis. Mice on the FG-FM diet also had the lowest plasma IL-6 levels and claudin2 expression levels in the colon, indicating reduced systemic inflammation and improved gut barrier function. This study suggested that foxtail millet whole grain is an attractive choice for the intervention of IBD and gut microbiota dysbiosis, and its prebiotic properties are highly affected by the processing methods.


2021 ◽  
Author(s):  
Mengru Guo ◽  
Xinran Liu ◽  
Yiwei Tan ◽  
Fangyuan Kang ◽  
Xinghua Zhu ◽  
...  

Sucralose is one of the most widely used artificial sweeteners, free of nutrients and calories. It’s approval and uses correlate many of the worldwide epidemiological changes of inflammatory bowel disease...


Planta Medica ◽  
2021 ◽  
Author(s):  
Jiaqi Wu ◽  
Yuzheng Wu ◽  
Yue Chen ◽  
Mengyang Liu ◽  
Haiyang Yu ◽  
...  

AbstractUlcerative colitis has been recognized as a chronic inflammatory disease predominantly disturbing the colon and rectum. Clinically, the aminosalicylates, steroids, immunosuppressants, and biological drugs are generally used for the treatment of ulcerative colitis at different stages of disease progression. However, the therapeutic efficacy of these drugs does not satisfy the patients due to the frequent drug resistance. Herein, we reported the anti-ulcerative colitis activity of desmethylbellidifolin, a xanthone isolated from Gentianella acuta, in dextran sulfate sodium-induced colitis in mice. C57BL/6 mice were treated with 2% dextran sulfate sodium in drinking water to induce acute colitis. Desmethylbellidifolin or balsalazide sodium was orally administrated once a day. Biological samples were collected for immunohistological analysis, intestinal barrier function evaluation, cytokine measurement, and gut microbiota analysis. The results revealed that desmethylbellidifolin alleviated colon shortening and body weight loss in dextran sulfate sodium-induced mice. The disease activity index was also lowered by desmethylbellidifolin after 9 days of treatment. Furthermore, desmethylbellidifolin remarkably ameliorated colonic inflammation through suppressing the expression of interleukin-6 and tumor necrosis factor-α. The intestinal epithelial barrier was strengthened by desmethylbellidifolin through increasing levels of occludin, ZO-1, and claudins. In addition, desmethylbellidifolin modulated the gut dysbiosis induced by dextran sulfate sodium. These findings suggested that desmethylbellidifolin effectively improved experimental ulcerative colitis, at least partly, through maintaining intestinal barrier integrity, inhibiting proinflammatory cytokines, and modulating dysregulated gut microbiota.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2298
Author(s):  
Gang Wang ◽  
Shuo Huang ◽  
Shuang Cai ◽  
Haitao Yu ◽  
Yuming Wang ◽  
...  

Lactobacillus reuteri, a commensal intestinal bacteria, has various health benefits including the regulation of immunity and intestinal microbiota. We examined whether L. reuteri I5007 could protect mice against colitis in ameliorating inflammation, modulating microbiota, and metabolic composition. In vitro, HT-29 cells were cultured with L. reuteri I5007 or lipopolysaccharide treatment under three different conditions, i.e., pre-, co- (simultaneous), and posttreatment. Pretreatment with L. reuteri I5007 effectively relieves inflammation in HT-29 cells challenged with lipopolysaccharide. In vivo, mice were given L. reuteri I5007 by gavage throughout the study, starting one week prior to dextran sulfate sodium (DSS) treatment for one week followed by two days without DSS. L. reuteri I5007 improved DSS-induced colitis, which was confirmed by reduced weight loss, colon length shortening, and histopathological damage, restored the mucus layer, as well as reduced pro-inflammatory cytokines levels. Analysis of 16S rDNA sequences and metabolome demonstrates that L. reuteri I5007 significantly alters colonic microbiota and metabolic structural and functional composition. Overall, the results demonstrate that L. reuteri I5007 pretreatment could effectively alleviate intestinal inflammation by regulating immune responses and altering the composition of gut microbiota structure and function, as well as improving metabolic disorders in mice with colitis.


2018 ◽  
Vol 9 ◽  
Author(s):  
Haiwen Zhang ◽  
Rui Hua ◽  
Bingxi Zhang ◽  
Xiaomeng Zhang ◽  
Hui Yang ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76520 ◽  
Author(s):  
Chil-sung Kang ◽  
Mingi Ban ◽  
Eun-Jeong Choi ◽  
Hyung-Geun Moon ◽  
Jun-Sung Jeon ◽  
...  

Nutrients ◽  
2017 ◽  
Vol 9 (8) ◽  
pp. 875 ◽  
Author(s):  
Kai Wang ◽  
Xiaolu Jin ◽  
Mengmeng You ◽  
Wenli Tian ◽  
Richard Leu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document