scholarly journals Argonaute2 attenuates active transcription by limiting RNA Polymerase II elongation in Drosophila melanogaster

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ezequiel Nazer ◽  
Ryan K. Dale ◽  
Cameron Palmer ◽  
Elissa P. Lei
2008 ◽  
Vol 28 (8) ◽  
pp. 2745-2757 ◽  
Author(s):  
Magdalena Murawska ◽  
Natascha Kunert ◽  
Joke van Vugt ◽  
Gernot Längst ◽  
Elisabeth Kremmer ◽  
...  

ABSTRACT ATP-dependent chromatin remodelers of the CHD family play important roles during differentiation and development. Three CHD proteins, dMi-2, dChd1, and Kismet, have been described for Drosophila melanogaster. Here, we study dCHD3, a novel member of the CHD family. dCHD3 is related in sequence to dMi-2 but lacks several domains implicated in dMi-2 function. We demonstrate that dCHD3 is a nuclear protein and that expression is tightly regulated during fly development. Recombinant dCHD3 remodels mono- and polynucleosomes in an ATP-dependent manner in vitro. Its chromodomains are critical for nucleosome binding and remodeling. Unlike dMi-2, dCHD3 exists as a monomer. Nevertheless, both proteins colocalize with RNA polymerase II to actively transcribed regions on polytene chromosomes, suggesting that both remodelers participate in the process of transcription.


2012 ◽  
Vol 109 (6) ◽  
pp. 1979-1984 ◽  
Author(s):  
F. L. Chan ◽  
O. J. Marshall ◽  
R. Saffery ◽  
B. Won Kim ◽  
E. Earle ◽  
...  

FEBS Letters ◽  
1993 ◽  
Vol 335 (1) ◽  
pp. 73-75 ◽  
Author(s):  
Zhihong Liu ◽  
Roland E. Kontermann ◽  
Rüdiger A. Schulze ◽  
Gabriele Petersen ◽  
Ekkehard K.F. Bautz

1987 ◽  
Vol 7 (9) ◽  
pp. 3341-3344 ◽  
Author(s):  
D S Gilmour ◽  
J T Lis

In Drosophila melanogaster the five histone genes are within a 5-kilobase region which is repeated 100 times at a single chromosomal site. These 5-kilobase repeats are of two distinct classes, short and long, that differ by approximately 200 base pairs of DNA in the spacer region between the H1 and H3 genes. Since the mRNA-homologous regions of the repeats are highly conserved, one cannot examine differential expression of the repeats by classical hybridization methods. In this study, we assessed their transcriptional activity by measuring in vivo the relative amounts of RNA polymerase II that were cross-linked by UV irradiation to the two different histone repeats. The RNA polymerase II density on the long repeat in Schneider line 2 cells was strikingly lower (10-fold) than the density on the short repeat. The magnitude of this difference cannot be accounted for by reduced transcription of only one or two genes of the repeat. The density of topoisomerase I, an indicator of transcriptional activity, was also much higher on the short repeat than on the long repeat of line 2 cells. In contrast, the RNA polymerase II density was slightly higher on the long repeat than on the short repeat in a second cell line, KcH. The major difference between active (KcH) and inactive (S2) long repeats resides in the H1-H3 nontranscribed spacer. This portion of the spacer may contain a component necessary for expression that can act over a moderate distance and affect multiple genes of the repeat.


1992 ◽  
Vol 12 (3) ◽  
pp. 928-935 ◽  
Author(s):  
D A Harrison ◽  
M A Mortin ◽  
V G Corces

A small, divergently transcribed gene is located 500 bp upstream of the suppressor of Hairy-wing locus of Drosophila melanogaster. Sequencing of a full-length cDNA clone of the predominant 850-nucleotide transcript reveals that this gene encodes a 15,100-Da protein with high homology to a subunit of RNA polymerase II. The RpII15 protein is 46% identical to the RPB9 protein of Saccharomyces cerevisiae, one of the smallest subunits of RNA polymerase II from that species. Among those identical residues are four pairs of cysteines whose spacing is suggestive of two metal-binding "finger" domains. The gene is expressed at all developmental stages and in all tissues. Two deletions within the RpII15 gene are multiphasic lethal deletions, with accumulation of dead animals commencing at the second larval instar. Ovary transplantation experiments indicate that survival of mutant animals to this stage is due to the persistence of maternal gene product throughout embryogenesis and early larval development. The RpII15 gene product is thus necessary for viability of D. melanogaster.


1985 ◽  
Vol 5 (8) ◽  
pp. 2009-2018
Author(s):  
D S Gilmour ◽  
J T Lis

We describe a method for examining the in vivo distribution of a protein on specific eucaryotic DNA sequences. In this method, proteins are cross-linked to DNA in intact cells, and the protein-DNA adducts are isolated by immunoprecipitation with antiserum against the protein. Characterization of the DNA cross-linked to the precipitated protein identifies the sequences with which the protein is associated in vivo. Here, we applied these methods to detect RNA polymerase II-DNA interactions in heat-shocked and untreated Drosophila melanogaster Schneider line 2 cells. The level of RNA polymerase II associated with several heat shock genes increased dramatically in response to heat shock, whereas the level associated with the copia genes decreased, indicating that both induction of heat shock gene expression and repression of the copia gene expression by heat shock occur at the transcriptional level. Low levels of RNA polymerase II were present on DNA outside of the transcription units, and for at least two genes, hsp83 and hsp26, RNA polymerase II initiated binding near the transcription start site. Moreover, for hsp70, the density of RNA polymerase II on sequences downstream of the polyadenylate addition site was much lower than that observed on the gene internal sequences. Examination of the amount of specific restriction fragments cross-linked to RNA polymerase II provides a means of detecting RNA polymerase II on individual members of multigene families. This analysis shows that RNA polymerase II is associated with only one of the two cytoplasmic actin genes.


Sign in / Sign up

Export Citation Format

Share Document