scholarly journals Physical origin of higher-order soliton fission in nanophotonic semiconductor waveguides

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Charles Ciret ◽  
Simon-Pierre Gorza ◽  
Chad Husko ◽  
Gunther Roelkens ◽  
Bart Kuyken ◽  
...  
2016 ◽  
Author(s):  
Tonglei Cheng ◽  
Xiaojie Xue ◽  
Lai Liu ◽  
Weiqing Gao ◽  
Takenobu Suzuki ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramona Scheibinger ◽  
Niklas M. Lüpken ◽  
Mario Chemnitz ◽  
Kay Schaarschmidt ◽  
Jens Kobelke ◽  
...  

AbstractSupercontinuum generation enabled a series of key technologies such as frequency comb sources, ultrashort pulse sources in the ultraviolet or the mid-infrared, as well as broadband light sources for spectroscopic methods in biophotonics. Recent advances utilizing higher-order modes have shown the potential to boost both bandwidth and modal output distribution of supercontinuum sources. However, the strive towards a breakthrough technology is hampered by the limited control over the intra- and intermodal nonlinear processes in the highly multi-modal silica fibers commonly used. Here, we investigate the ultrafast nonlinear dynamics of soliton-based supercontinuum generation and the associated mode coupling within the first three lowest-order modes of accurately dispersion-engineered liquid-core fibers. By measuring the energy-spectral evolutions and the spatial distributions of the various generated spectral features polarization-resolved, soliton fission and dispersive wave formation are identified as the origins of the nonlinear broadening. Measured results are confirmed by nonlinear simulations taking advantage of the accurate modeling capabilities of the ideal step-index geometry of our liquid-core platform. While operating in the telecommunications domain, our study allows further advances in nonlinear switching in emerging higher-order mode fiber networks as well as novel insights into the sophisticated nonlinear dynamics and broadband light generation in pre-selected polarization states.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


1997 ◽  
Vol 161 ◽  
pp. 505-510
Author(s):  
Alexandra J. MacDermott ◽  
Laurence D. Barron ◽  
Andrè Brack ◽  
Thomas Buhse ◽  
John R. Cronin ◽  
...  

AbstractThe most characteristic hallmark of life is its homochirality: all biomolecules are usually of one hand, e.g. on Earth life uses only L-amino acids for protein synthesis and not their D mirror images. We therefore suggest that a search for extra-terrestrial life can be approached as a Search for Extra- Terrestrial Homochirality (SETH). The natural choice for a SETH instrument is optical rotation, and we describe a novel miniaturized space polarimeter, called the SETH Cigar, which could be used to detect optical rotation as the homochiral signature of life on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. We believe that homochirality may be found in the subsurface layers on Mars as a relic of extinct life, and on other solar system bodies as a sign of advanced pre-biotic chemistry. We discuss the chiral GC-MS planned for the Roland lander of the Rosetta mission to a comet and conclude with theories of the physical origin of homochirality.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Sign in / Sign up

Export Citation Format

Share Document