scholarly journals pLG72 levels increase in early phase of Alzheimer’s disease but decrease in late phase

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chieh-Hsin Lin ◽  
Chih-Chiang Chiu ◽  
Chiung-Hsien Huang ◽  
Hui-Ting Yang ◽  
Hsien-Yuan Lane

Abstract pLG72, named as D-amino acid oxidase activator (although it is not an activator of D-amino acid oxidase demonstrated by later studies), in mitochondria has been regarded as an important modulator of D-amino acid oxidase that can regulate the N-methyl-D-aspartate receptor (NMDAR). Both oxidative stress in mitochondria and NMDAR neurotransmission play essential roles in the process of neurodegenerative dementia. The aim of the study was to investigate whether pLG72 levels changed with the severity of neurodegenerative dementia. We enrolled 376 individuals as the overall cohort, consisting of five groups: healthy elderly, amnestic mild cognitive impairment [MCI], mild Alzheimer’s disease [AD], moderate AD, and severe AD. pLG72 levels in plasma were measured using Western blotting. The severity of cognitive deficit was principally evaluated by Clinical Dementia Rating Scale. A gender- and age- matched cohort was selected to elucidate the effects of gender and age. pLG72 levels increased in the MCI and mild AD groups when compared to the healthy group. However, pLG72 levels in the moderate and severe AD groups were lower than those in the mild AD group. D-serine level and D- to total serine ratio were significantly different among the five groups. L-serine levels were correlated with the pLG72 levels. The results in the gender- and age- matched cohort were similar to those of the overall cohort. The finding supports the hypothesis of NMDAR hypofunction in early-phase dementia and NMDAR hyperfunction in late-phase dementia. Further studies are warranted to test whether pLG72 could reflect the function of NMDAR.

2021 ◽  
Vol 22 (20) ◽  
pp. 10917
Author(s):  
Yu-Jung Cheng ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

Numerous studies over the last several years have shown that d-amino acids, especially d-serine, have been related to brain and neurological disorders. Acknowledged neurological functions of d-amino acids include neurotransmission and learning and memory functions through modulating N-methyl-d-aspartate type glutamate receptors (NMDARs). Aberrant d-amino acids level and polymorphisms of genes related to d-amino acids metabolism are associated with neurodegenerative brain conditions. This review summarizes the roles of d-amino acids and pLG72, also known as d-amino acid oxidase activator, on two neurodegenerative disorders, schizophrenia and Alzheimer’s disease (AD). The scope includes the changes in d-amino acids levels, gene polymorphisms of G72 genomics, and the role of pLG72 on NMDARs and mitochondria in schizophrenia and AD. The clinical diagnostic value of d-amino acids and pLG72 and the therapeutic importance are also reviewed.


1996 ◽  
Vol 76 (06) ◽  
pp. 0993-0997
Author(s):  
Zhao-Yan Li ◽  
Xiao-Wei Wu ◽  
Tie-Fu Yu ◽  
Eric C-Y Lian

SummaryBy means of CM-Sephadex C-25, DEAE-Sephadex A-50, Sephadex G-200, and Sephadex G-75 chromatographies, a lupus anticoagulant like protein (LALP) from Agkistrodon halys brevicaudus was purified. On SDS-PAGE, the purified LALP had a molecular weight of 25,500 daltons under non-reducing condition and 15,000 daltons under reducing condition. The isoelectric point was pH 5.6. Its N terminal amino acid sequencing revealed a mixture of 2 sequences: DCP(P/S)(D/G)WSSYEGH(C/R)Q(Q/K). It was devoid of phospho-lipaseA, fibrino(geno)lytic, 5′-nucleotidase, L-amino acid oxidase, phosphomonoesterase, phosphodiesterase and thrombin-like activities, which were found in crude venom. In the presence of LALP, PT, aPTT, and dRVVT of human plasma were markedly prolonged and its effects were concentration-dependent but time-independent. The inhibitory effect of LALP on the plasma clotting time was enhanced by decreasing phospholipid concentration in TTI test. The individual clotting factor activity was not affected by LALP when higher dilutions of LALP-plasma mixture were used for assay. Russell’s viper venom time was shortened when high phospholipid confirmatory reagent was used. Therefore, the protein has lupus anticoagulant property.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


Author(s):  
Hong Wei ◽  
Zuyue Chen ◽  
Ari Koivisto ◽  
Antti Pertovaara

Abstract Background Earlier studies show that endogenous sphingolipids can induce pain hypersensitivity, activation of spinal astrocytes, release of proinflammatory cytokines and activation of TRPM3 channel. Here we studied whether the development of pain hypersensitivity induced by sphingolipids in the spinal cord can be prevented by pharmacological inhibition of potential downstream mechanisms that we hypothesized to include TRPM3, σ1 and NMDA receptors, gap junctions and D-amino acid oxidase. Methods Experiments were performed in adult male rats with a chronic intrathecal catheter for spinal drug administrations. Mechanical nociception was assessed with monofilaments and heat nociception with radiant heat. N,N-dimethylsphingosine (DMS) was administered to induce pain hypersensitivity. Ononetin, isosakuranetin, naringenin (TRPM3 antagonists), BD-1047 (σ1 receptor antagonist), carbenoxolone (a gap junction decoupler), MK-801 (NMDA receptor antagonist) and AS-057278 (inhibitor of D-amino acid oxidase, DAAO) were used to prevent the DMS-induced hypersensitivity, and pregnenolone sulphate (TRPM3 agonist) to recapitulate hypersensitivity. Results DMS alone produced within 15 min a dose-related mechanical hypersensitivity that lasted at least 24 h, without effect on heat nociception. Preemptive treatments with ononetin, isosakuranetin, naringenin, BD-1047, carbenoxolone, MK-801 or AS-057278 attenuated the development of the DMS-induced hypersensitivity, but had no effects when administered alone. Pregnenolone sulphate (TRPM3 agonist) alone induced a dose-related mechanical hypersensitivity that was prevented by ononetin, isosakuranetin and naringenin. Conclusions Among spinal pronociceptive mechanisms activated by DMS are TRPM3, gap junction coupling, the σ1 and NMDA receptors, and DAAO.


1983 ◽  
Vol 258 (6) ◽  
pp. 3799-3802
Author(s):  
K Yagi ◽  
F Tanaka ◽  
N Nakashima ◽  
K Yoshihara

Sign in / Sign up

Export Citation Format

Share Document