scholarly journals Characterization of the Long Terminal Repeat of the Endogenous Retrovirus-derived microRNAs in the Olive Flounder

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hee-Eun Lee ◽  
Ara Jo ◽  
Jennifer Im ◽  
Hee-Jae Cha ◽  
Woo-Jin Kim ◽  
...  

Abstract Endogenous retroviruses (ERVs) have been identified at different copy numbers in various organisms. The long terminal repeat (LTR) element of an ERV has the capacity to exert regulatory influence as both a promoter and enhancer of cellular genes. Here, we describe olive flounder (OF)-ERV9, derived from chromosome 9 of the olive flounder. OF-ERV9-LTR provide binding sites for various transcription factors and showed enhancer activity. The OF-ERV9-LTR demonstrates high sequence similarity with the 3′ untranslated region (UTR) of various genes that also contain seed sequences (TGTTTTG) that bind the LTR-derived microRNA(miRNA), OF-miRNA-307. Additionally, OF-miRNA-307 collaborates with transcription factors located in OF-ERV9-LTR to regulate gene expression. Taken together, our data facilitates a greater understanding of the molecular function of OF-ERV families and suggests that OF-miRNA-307 may act as a super-enhancer miRNA regulating gene activity.

1987 ◽  
Vol 7 (8) ◽  
pp. 2735-2744
Author(s):  
J P Quinn ◽  
N Holbrook ◽  
D Levens

The gibbon ape leukemia virus (GALV) contains enhancer activity within its long terminal repeat. In the GALV Seato strain this activity resides in a 48-base-pair (bp) repeated element. We demonstrate the existence of a cellular protein which binds in this region of the Seato strain. A sensitive method for enriching protein-DNA complexes from crude extracts coupled with exonuclease and DNase footprint analysis revealed the specific binding of this protein to a 21-bp region within each repeated element. A 22-bp oligonucleotide fragment defined solely by the 21-bp footprint binds a protein in vitro and displays enhancer activity in vivo, suggesting that this protein is a major determinant of GALV enhancer activity. The protein is present in three cell lines which are positive for enhancer activity and is not detected in Jurkat cells, which are negative for enhancer activity. Only GALV long-terminal-repeat variants which support high levels of enhancer activity in vivo compete with this protein for specific binding in vitro, suggesting a potential role for the protein in determining enhancer activity. This protein binding is not inhibited by competition with heterologous retroviral enhancers, demonstrating that it is not a ubiquitous retroviral enhancer binding protein.


Oncotarget ◽  
2018 ◽  
Vol 9 (31) ◽  
pp. 22069-22078 ◽  
Author(s):  
Masataka Shimonosono ◽  
Takaaki Arigami ◽  
Shigehiro Yanagita ◽  
Daisuke Matsushita ◽  
Yasuto Uchikado ◽  
...  

Author(s):  
Weiyu Zhang ◽  
Fuquan Chen ◽  
Ruiqing Chen ◽  
Dan Xie ◽  
Jiao Yang ◽  
...  

AbstractEndogenous retroviruses (ERVs) contribute to ∼10 percent of the mouse genome. They are often silenced in differentiated somatic cells but differentially expressed at various embryonic developmental stages. A minority of mouse embryonic stem cells (ESCs), like 2-cell cleavage embryos, highly express ERV MERVL. However, the role of ERVs and mechanism of their activation in these cells are still poorly understood. In this study, we investigated the regulation and function of the stage-specific expressed ERVs, with a particular focus on the totipotency marker MT2/MERVL. We show that the transcription factor Zscan4c functions as an activator of MT2/MERVL and 2-cell/4-cell embryo genes. Zinc finger domains of Zscan4c play an important role in this process. In addition, Zscan4c interacts with MT2 and regulates MT2-nearby 2-cell/4-cell genes through promoting enhancer activity of MT2. Furthermore, MT2 activation is accompanied by enhanced H3K4me1, H3K27ac, and H3K14ac deposition on MT2. Zscan4c also interacts with GBAF chromatin remodelling complex through SCAN domain to further activate MT2 enhancer activity. Taken together, we delineate a previously unrecognized regulatory axis that Zscan4c interacts with and activates MT2/MERVL loci and their nearby genes through epigenetic regulation.


1998 ◽  
Vol 72 (7) ◽  
pp. 5526-5534 ◽  
Author(s):  
Véronique Kiermer ◽  
Carine Van Lint ◽  
Delphine Briclet ◽  
Caroline Vanhulle ◽  
Richard Kettmann ◽  
...  

ABSTRACT Bovine leukemia virus (BLV) replication is controlled by bothcis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5′ half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.


2018 ◽  
Author(s):  
Audrey T. Lin ◽  
Cindy G. Santander ◽  
Emanuele Marchi ◽  
Timokratis Karamitros ◽  
Aris Katzourakis ◽  
...  

AbstractEndogenous retroviruses (ERVs) are remnants of ancient retroviral infections that make up to 8% of the human genome. Although these elements are mostly fragmented and inactive, many proviruses belonging to the HERV-K (HML-2) family, the only lineage still proliferating in the genome after the human-chimpanzee split, have intact open reading frames, some encoding for accessory genes callednp9andrecthat interact with oncogenic pathways. Many studies have established that the transient expression of ERVs are in both stem cells and cancers results in aberrant self-renewal and uncontrolled proliferation.The wealth of high-quality genomic and transcriptomic Illumina sequence data available from The Cancer Genome Atlas (TCGA) that are sequenced from a diversity of different tumour types makes it a valuable resource in cancer research. However, there is currently no universal computational method for inferring expression of specific repetitive elements from RNA-seq data, such as genes encoded by HERV-K (HML-2).This study presents a novel and a highly specific pipeline that is able to capture and measure transcription ofnp9andrecencoded by proviruses that share great sequence similarity, and are transcribed at very low levels. We show by using our novel methodology thatnp9andrecare overexpressed in breast cancer, germ cell tumours, skin melanoma, lymphoma, ovarian cancer, and prostate cancer compared to non-diseased tissues. We also show thatnp9andrecare specifically expressed in the 8 and 16-cell stage in human preimplantation embryos.


1987 ◽  
Vol 7 (2) ◽  
pp. 787-798 ◽  
Author(s):  
L Sealey ◽  
R Chalkley

We used the sensitive gel electrophoresis DNA-binding assay and DNase I footprinting to detect at least two protein factors (EFI and EFII) that bound specifically to the Rous sarcoma virus (RSV) enhancer in vitro. These factors were differentially extracted from quail cell nuclei, recognized different nucleotide sequences in the U3 region of the RSV long terminal repeat, and appeared to bind preferentially to opposite DNA strands as monitored by the DNase I protection assay. The EFI- and EFII-protected regions within U3 corresponded closely to sequences previously demonstrated by deletion mutagenesis to be required for enhancer activity, strongly suggesting a functional significance for these proteins. Only weak homologies between other enhancer consensus sequence motifs and the EFI and EFII recognition sites were observed, and other viral enhancers from simian virus 40 and Moloney murine sarcoma virus did not compete effectively with the RSV enhancer for binding either factor.


Sign in / Sign up

Export Citation Format

Share Document