scholarly journals Publisher Correction: Signal transmission through elements of the cytoskeleton form an optimized information network in eukaryotic cells

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
B. R. Frieden ◽  
R. A. Gatenby

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiayan Zhang ◽  
Hui Wang ◽  
Simon Imhof ◽  
Xueting Zhou ◽  
Shiqing Liao ◽  
...  

AbstractEukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked “density scissors” connect with one another to form a “scissors stack network (SSN)” plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.


2021 ◽  
Vol 4 (2) ◽  
pp. 51
Author(s):  
Han Yu ◽  
Likun Liu ◽  
Shulan Hao

Cytoskeleton system is mainly composed of three kinds of fibrils: microtubules, microfilaments and intermediate filaments. They are a complex network of protein filaments in the cytoplasm of eukaryotic cells. They not only act as scaffolds in cells, but also play an important role in maintaining the movement of cells, participating in the material transport and signal transmission in cells. It is found that the whole cytoskeleton system is closely related to tumor invasion and growth. Therefore, this article reviews the overview of the cytoskeleton system and its significance for tumor cell invasion and growth.


Author(s):  
J. Jakana ◽  
M.F. Schmid ◽  
P. Matsudaira ◽  
W. Chiu

Actin is a protein found in all eukaryotic cells. In its polymerized form, the cells use it for motility, cytokinesis and for cytoskeletal support. An example of this latter class is the actin bundle in the acrosomal process from the Limulus sperm. The different functions actin performs seem to arise from its interaction with the actin binding proteins. A 3-dimensional structure of this macromolecular assembly is essential to provide a structural basis for understanding this interaction in relationship to its development and functions.


Author(s):  
G.P.A. Vigers ◽  
R.A. Crowther ◽  
B.M.F. Pearse

Clathrin forms the polyhedral cage of coated vesicles, which mediate the transfer of selected membrane components within eukaryotic cells. Clathrin cages and coated vesicles have been extensively studied by electron microscopy of negatively stained preparations and shadowed specimens. From these studies the gross morphology of the outer part of the polyhedral coat has been established and some features of the packing of clathrin trimers into the coat have also been described. However these previous studies have not revealed any internal details about the position of the terminal domain of the clathrin heavy chain, the location of the 100kd-50kd accessory coat proteins or the interactions of the coat with the enclosed membrane.


Author(s):  
U. Aebi ◽  
E.C. Glavaris ◽  
R. Eichner

Five different classes of intermediate-sized filaments (IFs) have been identified in differentiated eukaryotic cells: vimentin in mesenchymal cells, desmin in muscle cells, neurofilaments in nerve cells, glial filaments in glial cells and keratin filaments in epithelial cells. Despite their tissue specificity, all IFs share several common attributes, including immunological crossreactivity, similar morphology (e.g. about 10 nm diameter - hence ‘10-nm filaments’) and the ability to reassemble in vitro from denatured subunits into filaments virtually indistinguishable from those observed in vivo. Further more, despite their proteinchemical heterogeneity (their MWs range from 40 kDa to 200 kDa and their isoelectric points from about 5 to 8), protein and cDNA sequencing of several IF polypeptides (for refs, see 1,2) have provided the framework for a common structural model of all IF subunits.


Sign in / Sign up

Export Citation Format

Share Document