scholarly journals The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Arunas Stirke ◽  
Raimonda Celiesiute-Germaniene ◽  
Aurelijus Zimkus ◽  
Nerija Zurauskiene ◽  
Povilas Simonis ◽  
...  

Abstract An investigation of the yeast cell resealing process was performed by studying the absorption of the tetraphenylphosphonium (TPP+) ion by the yeast Saccharomyces cerevisiae. It was shown that the main barrier for the uptake of such TPP+ ions is the cell wall. An increased rate of TPP+ absorption after treatment of such cells with a pulsed electric field (PEF) was observed only in intact cells, but not in spheroplasts. The investigation of the uptake of TPP+ in PEF treated cells exposed to TPP+ for different time intervals also showed the dependence of the absorption rate on the PEF strength. The modelling of the TPP+ uptake recovery has also shown that the characteristic decay time of the non-equilibrium (PEF induced) pores was approximately a few tens of seconds and this did not depend on the PEF strength. A further investigation of such cell membrane recovery process using a florescent SYTOX Green nucleic acid stain dye also showed that such membrane resealing takes place over a time that is like that occurring in the cell wall. It was thus concluded that the similar characteristic lifetimes of the non-equilibrium pores in the cell wall and membrane after exposure  to  PEF indicate a strong coupling between these parts of the cell.

Author(s):  
Giulia Maria Pires dos Santos ◽  
Gustavo Ramalho Cardoso dos Santos ◽  
Mariana Ingrid Dutra da Silva Xisto ◽  
Rodrigo Rollin-Pinheiro ◽  
Andréa Regina de Souza Baptista ◽  
...  

2008 ◽  
Vol 56 (24) ◽  
pp. 11854-11861 ◽  
Author(s):  
Rémi Pradelles ◽  
Herve Alexandre ◽  
Anne Ortiz-Julien ◽  
David Chassagne

1952 ◽  
Vol 96 (6) ◽  
pp. 569-580 ◽  
Author(s):  
Maclyn McCarty

Cell wall preparations of uniform chemical constitution have been obtained from several strains of group A streptococci. The isolated cell walls are dissolved by the same fractions of the Streptomyces albus enzymes that are effective in the lysis of intact cells, and it is likely that enzymatic lysis of group A streptococci is effected by an attack on the cell wall. The streptococcal cell wall, as prepared in this study, consists of approximately two-thirds carbohydrate and one-third protein. Small amounts of other components may be present. The carbohydrate component, which is composed primarily of N-acetyl-glucosamine and rhamnose, is the group-specific C carbohydrate. The evidence indicates that one of the streptomyces enzymes is directed toward the carbohydrate component of the cell wall.


2009 ◽  
Vol 84 (4) ◽  
pp. 269-276 ◽  
Author(s):  
Mizuho Sekiya ◽  
Satoru Nogami ◽  
Yoshikazu Ohya

1963 ◽  
Vol 9 (1) ◽  
pp. 117-127
Author(s):  
E. R. Blakley

The rate of fermentation of glucose by suspensions of Candida utilis at acid pH values is reduced by alkyl benzene sulphonate in the range 75 to 250 γ/ml. Concentrations of alkyl benzene sulphonate below 75 γ/ml decrease the rate of fermentation of glucose above pH 7 and respiration at all pH values. An upper limit of 70 to 90% inhibition of fermentation or respiration is obtained at concentrations of alkyl benzene sulphonate above 250 γ/ml, except at pH 4.2 where complete inhibition is obtained. The effect of alkyl benzene sulphonate on the fermentation of glucose by yeast protoplasts is similar to the effect observed for intact yeasts. Some enzymatic reactions of cell-free extracts are inhibited by concentrations of alkyl benzene sulphonate lower than that required to affect fermentation by intact cells. The enzyme components of the cell-free preparation appear to vary in their sensitivity to the surfactant. The results support the view that the surfactant in the micellar form disrupts the cell wall of the yeast, and unassociated molecules inactivate some enzymes vital for the metabolism of the cell.


Sign in / Sign up

Export Citation Format

Share Document