scholarly journals The effect of Grobiotic-P combined with yeast cell wall and gluconic acid on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks

2009 ◽  
Vol 88 (11) ◽  
pp. 2360-2367 ◽  
Author(s):  
C.M. Jacobs ◽  
C.M. Parsons
2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 333-334
Author(s):  
Hyunjin Kyoung ◽  
Myungwoo Cho ◽  
Hanbae Lee ◽  
Sangwoo Park ◽  
Joowon Kang ◽  
...  

Abstract The study was conducted to investigate effects of yeast cell wall product on growth performance, immune responses, and gene expression of tight junction proteins of weaned pigs. A total of 112 weaned pigs (7.98 ± 0.43 kg BW) were randomly assigned to 2 dietary treatments (8 pigs/pen; 7 replicates/treatments) for 4 weeks in a randomized complete block design (block = BW). Dietary treatments were 1) a commercial basal nursery diet (CON) and 2) CON + 0.05% yeast cell wall product (YCW, EasyBio Inc., Seoul, Korea). Blood was collected from one randomly selected pig per pen on d 0, 7, and 14 after weaning. The randomly selected one pig per replicate was euthanized to collect ileum tissue samples at the end of the experimental period. Measurements were growth performance, number of white blood cells (WBC) by an automated hematology analyzer calibrated for porcine blood, cortisol, tumor necrosis factor-α (TNF-α), transforming growth factor-β1, interleukin-1β (IL-1β), and interleukin-6 (IL-6) by the ELISA, and gene expression of tight junction in ileum tissues. Data were analyzed using the PROC GLM procedure of SAS. The statistical model for every measurement included dietary effect and BW as a covariate. Pigs fed YCW had higher (P < 0.10) ADG than those fed CON during overall experimental period. Pigs fed YCW had lower WBC on d 14 (P < 0.10), TNF-α on d 7 (P < 0.10), and decreased IL-1β on d 14 (P < 0.05) than those fed CON. In addition, The YCW increased (P < 0.05) expression of Claudin family, Occludin, Muc1, INF-α, and IL-6, but decreased (P < 0.05) expression of TNF-α genes in the ileum tissues compared with CON. In conclusion, addition of yeast cell wall product in the nursery diet improved growth performance and gut health and modified immune responses of weaned pigs.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 504
Author(s):  
Debora Muratori Holanda ◽  
Alexandros Yiannikouris ◽  
Sung Woo Kim

Pigs are highly susceptible to mycotoxins. This study investigated the effects of a postbiotic yeast cell wall-based blend (PYCW; Nicholasville, KY, USA) on growth and health of newly-weaned pigs under dietary challenge of multiple mycotoxins. Forty-eight newly-weaned pigs (21 d old) were individually allotted to four dietary treatments, based on a three phase-feeding, in a randomized complete block design (sex; initial BW) with two factors for 36 d. Two factors were dietary mycotoxins (deoxynivalenol: 2000 μg/kg supplemented in three phases; and aflatoxin: 200 μg/kg supplemented only in phase 3) and PYCW (0.2%). Growth performance (weekly), blood serum (d 34), and jejunal mucosa immune and oxidative stress markers (d 36) data were analyzed using MIXED procedure of SAS. Mycotoxins reduced (p < 0.05) average daily feed intake (ADFI) and average daily gain (ADG) during the entire period whereas PYCW did not affect growth performance. Mycotoxins reduced (p < 0.05) serum protein, albumin, creatinine, and alanine aminotransferase whereas PYCW decreased (p < 0.05) serum creatine phosphokinase. Neither mycotoxins nor PYCW affected pro-inflammatory cytokines and oxidative damage markers in the jejunal mucosa. No interaction was observed indicating that PYCW improved hepatic enzymes regardless of mycotoxin challenge. In conclusion, deoxynivalenol (2000 μg/kg, for 7 to 25 kg body weight) and aflatoxin B1 (200 μg/kg, for 16 to 25 kg body weight) impaired growth performance and nutrient digestibility of newly-weaned pigs, whereas PYCW could partially improve health of pigs regardless of mycotoxin challenge.


Sign in / Sign up

Export Citation Format

Share Document