scholarly journals Ubiquitylation and endocytosis of the human LAT1/SLC7A5 amino acid transporter

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Céline Barthelemy ◽  
Bruno André

AbstractThe human L-type amino acid transporter 1 (LAT1), also known as SLC7A5, catalyzes the transport of large neutral amino acids across the plasma membrane. As the main transporter of several essential amino acids, notably leucine, LAT1 plays an important role in mTORC1 activation. Furthermore, it is overexpressed in various types of cancer cells, where it contributes importantly to sustained growth. Despite the importance of LAT1 in normal and tumor cells, little is known about the mechanisms that might control its activity, for example by promoting its downregulation via endocytosis. Here we report that in HeLa cells, activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) triggers efficient endocytosis and degradation of LAT1. Under these conditions we found LAT1 downregulation to correlate with increased LAT1 ubiquitylation. This modification was considerably reduced in cells depleted of the Nedd4-2 ubiquitin ligase. By systematically mutagenizing the residues of the LAT1 cytosolic tails, we identified a group of three close lysines (K19, K25, K30) in the N-terminal tail that are important for PMA-induced ubiquitylation and downregulation. Our study thus unravels a mechanism of induced endocytosis of LAT1 elicited by Nedd4-2-mediated ubiquitylation of the transporter’s N-terminal tail.

2014 ◽  
Vol 554 ◽  
pp. 28-35 ◽  
Author(s):  
Katarzyna Michalec ◽  
Caroline Mysiorek ◽  
Mélanie Kuntz ◽  
Vincent Bérézowski ◽  
Andrzej A. Szczepankiewicz ◽  
...  

2015 ◽  
Vol 129 (12) ◽  
pp. 1131-1141 ◽  
Author(s):  
Yi-Yung Chen ◽  
Fredrick J. Rosario ◽  
Majida Abu Shehab ◽  
Theresa L. Powell ◽  
Madhulika B. Gupta ◽  
...  

Inhibition of placental mechanistic target of rapamycin (mTOR) signalling, which activates NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2) ubiquitin ligase leading to increased sodium-coupled neutral amino acid transporter 2 (SNAT-2) ubiquitination and removal from the syncytiotrophoblast plasma membrane may constitute a key mechanism underlying decreased placental amino acid transport in human IUGR.


2002 ◽  
Vol 96 (6) ◽  
pp. 1492-1497 ◽  
Author(s):  
Sang-Hwan Do ◽  
Ganesan L. Kamatchi ◽  
Jacqueline M. Washington ◽  
Zhiyi Zuo

Background Glutamate transporters play an important role in maintaining extracellular glutamate homeostasis. The authors studied the effects of volatile anesthetics on one type of glutamate transporters, excitatory amino acid transporter type 3 (EAAT3), and the role of protein kinase C in mediating these effects. Methods Excitatory amino acid transporter type 3 was expressed in Xenopus oocytes by injection of EAAT3 mRNA. Using two-electrode voltage clamp, membrane currents were recorded before, during, and after application of L-glutamate. Responses were quantified by integrating the current trace and are reported as microcoulombs. Data are mean +/- SEM. Results L-Glutamate-induced responses were increased gradually with the increased concentrations of isoflurane, a volatile anesthetic. At 0.52 and 0.70 mm isoflurane, the inward current was significantly increased compared with control. Isoflurane (0.70 mm) significantly increased Vmax (maximum velocity) (3.6 +/- 0.4 to 5.1 +/- 0.4 microC; P < 0.05) but not Km (Michoelis-Menten Constant) (55.4 +/- 17.0 vs. 61.7 +/- 13.6 microm; P > 0.05) of EAAT3 for glutamate compared with control. Treatment of the oocytes with phorbol-12-myrisate-13-acetate, a protein kinase C activator, caused a significant increase in transporter current (1.7 +/- 0.2 to 2.5 +/- 0.2 microC; P < 0.05). Responses in the presence of the combination of phorbol-12-myrisate-13-acetate and volatile anesthetics (isoflurane, halothane, or sevoflurane) were not greater than those when volatile anesthetic was present alone. Oocytes pretreated with any of the three protein kinase C inhibitors alone (chelerythrine, staurosporine, or calphostin C) did not affect basal transporter current. Although chelerythrine did not change the anesthetic effects on the activity of EAAT3, staurosporine or calphostin C abolished the anesthetic-induced increase of EAAT3 activity. Conclusions These data suggest that volatile anesthetics enhance EAAT3 activity and that protein kinase C is involved in mediating these anesthetic effects.


2019 ◽  
Vol 20 (10) ◽  
pp. 2428 ◽  
Author(s):  
Pascal Häfliger ◽  
Roch-Philippe Charles

Chronic proliferation is a major hallmark of tumor cells. Rapidly proliferating cancer cells are highly dependent on nutrients in order to duplicate their cell mass during each cell division. In particular, essential amino acids are indispensable for proliferating cancer cells. Their uptake across the cell membrane is tightly controlled by membrane transporters. Among those, the L-type amino acid transporter LAT1 (SLC7A5) has been repeatedly found overexpressed in a vast variety of cancers. In this review, we summarize the most recent advances in our understanding of the role of LAT1 in cancer and highlight preclinical studies and drug developments underlying the potential of LAT1 as therapeutic target.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Hanae Morio ◽  
Yoshie Reien ◽  
Yuri Hirayama ◽  
Hirofumi Hashimoto ◽  
Naohiko Anzai

AbstractL-type amino acid transporter 2 (LAT2) is a Na+-independent neutral amino acid transporter, whose function regulation system remains unclarified. Since protein kinase C (PKC) is known to regulate the functions of various transporters, we investigated whether human LAT2 (hLAT2) function is regulated by PKC. In mouse proximal tubule S2 cells, hLAT2 transport activity was upregulated by PKC activation. However, we found that the mRNA and protein expression of hLAT2 was not affected by PKC activation and that the upregulation was independent of the three potential PKC consensus sites in the hLAT2 amino acid sequence. Moreover, we found that PKC activation upregulated the Vmax value for hLAT2-mediated alanine transport, which was not accompanied by the induction of hLAT2 membrane insertion. In conclusion, we showed that hLAT2 function is upregulated by PKC activation, which is not related to either the de novo synthesis, the phosphorylation or the membrane insertion of hLAT2.


2011 ◽  
Vol 286 (10) ◽  
pp. 8697-8706 ◽  
Author(s):  
Arnau Vina-Vilaseca ◽  
Julia Bender-Sigel ◽  
Tatiana Sorkina ◽  
Ellen Ildicho Closs ◽  
Alexander Sorkin

Sign in / Sign up

Export Citation Format

Share Document