scholarly journals A Non-electric and Affordable Surface Engineered Particle (SEP) based Point-of-Use (POU) Water Disinfection System

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Deepa Dixit ◽  
Virupakshi Soppina ◽  
Chinmay Ghoroi

AbstractAccess to safe drinking water is still a distant dream to millions of people around the world. Especially, people from the low-income group in the developing countries remain deprived of this fundamental right and causes millions of death. There is an urgent need to develop affordable and easy to handle water filter which can provide desired drinking water quality without any electricity. In the present work, a simple and low-cost surface engineered particle (SEP) based filter is developed via alkali treatment of soda-lime-silica particle. The SEP based filter can be used as a portable, non-electric, gravity-driven Point-of-Use (POU) water disinfection system. The developed SEP-based filter is capable to arrest the 99.48% (~2 to 2.5 log10 reduction) of gram-negative bacteria Escherichia coli (E. coli OP50) on its surface from the water containing 3 × 108 cells/ml. No bacterial regrowth is observed in the purified water for 12 h. The performance of SEP bed filter is implicated to the nano-scale surface roughness, its distribution along with the surface charge and surface hydrophobicity which are favorable to attract and adhere the bacteria in the flowing water. The observation is consistent over multiple filtration cycles indicating the suitability of SEP based bed filter for POU water disinfection. The SEP surface with 0.05 mM Ag+ loading (SEP+) completely inactivated (>99.99999%) bacteria and protects any bacteria recontamination in the purified water for its long term usage. The strong and effective silver binding property of SEP surface enables very minimal silver loading and eliminates any health hazard due to low silver leaching (~50 ppb) which is well below the drinking water equivalent level (DWEL ≤ 100 ppb). In rural and urban slum areas of developing countries where no water purification system exists prior to consumption, the easy-to-implement and affordable SEP-based gravity-driven non-electric point-of-use water purifier (materials cost ~ 0.25 USD) can be used to protect millions of lives from water borne diseases.

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Adam Teusner ◽  
Rhett Butler ◽  
Pierre Le Clech

Fluoride concentrations in drinking water in excess of 1.5 mg L-1 are unsafe for human consumption. To reduce excess fluoride intake, developing countries must use low-cost, point-of-use defluoridation techniques. Although previous work has extensively assessed defluoridation using bone char (BC), most of the advanced studies have been based on the use of fluoridated distilled water as a feed solution. In the present study, BC columns were challenged with a range of model solutions, mimicking various pretreatment options. As a result, the relative impact of dissolved organic carbon (DOC) and suspended solids (SS) on the performance of BC filters was assessed. In addition, the performance of a gravity-driven, hollow fibre ultrafiltration (UF) module was examined with regards to the potential for use as a pretreatment option. SS were observed to severely clog the columns and cause the complete cessation of flow. The subsequent removal of SS by UF improved the general filter performance as well as increasing the BC lifetime by 50 %. The UF module achieved a reduction in DOC of 34 ± 6 %, resulting in an additional 30 % increase in the lifetime of the BC column.


2017 ◽  
Vol 319 ◽  
pp. 89-97 ◽  
Author(s):  
C. Chawla ◽  
A. Zwijnenburg ◽  
A.J.B. Kemperman ◽  
K. Nijmeijer

2016 ◽  
Vol 6 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Nuhu Amin ◽  
Yoshika S. Crider ◽  
Leanne Unicomb ◽  
Kishor K. Das ◽  
Partha Sarathi Gope ◽  
...  

Point-of-use water treatment with chlorine is underutilized in low-income households. The Zimba, an automated batch chlorinator, requires no electricity or moving parts, and can be installed at shared water points with intermittent flow. We conducted a small-scale trial to assess the acceptability and quality of Zimba-treated municipal water. Fieldworkers collected stored drinking water over a 10-week period from control (n = 24 households) and treatment (n = 30 households) compounds to assess levels of free chlorine and E. coli contamination. Overall, 80% of stored drinking water samples had a safe chlorine residual among treatment households, compared to 29% among control households (P < 0.001). Concentrations of E. coli were lower (mean difference = 0.4 log colony-forming units/100 mL, P = 0.004) in treatment compared to control households. Fifty-three percent of mothers (n = 17), thought the Zimba was easy to use and 76% were satisfied with the taste. The majority of mothers mentioned that collecting water from the Zimba took more time and created a long queue at the handpump. The Zimba successfully chlorinated household stored drinking water; however, further technology development is required to address user preferences. The Zimba may be a good option for point-of-collection water treatment in areas where queuing for water is uncommon.


2016 ◽  
Vol 2 (2) ◽  
pp. 304-311 ◽  
Author(s):  
Jeffrey M. P. Parr ◽  
Younggy Kim

Limited access to disinfected drinking water is a critical challenge in developing countries. This new water disinfection method can be operated by a minimal amount of electric energy that can be supplied by bicycle generators or photovoltaic solar panels.


2013 ◽  
Vol 47 (12) ◽  
pp. 3959-3965 ◽  
Author(s):  
Shihong Lin ◽  
Rixiang Huang ◽  
Yingwen Cheng ◽  
Jie Liu ◽  
Boris L.T. Lau ◽  
...  

2003 ◽  
Vol 1 (2) ◽  
pp. 73-84 ◽  
Author(s):  
Philip F. Souter ◽  
Graeme D. Cruickshank ◽  
Melanie Z. Tankerville ◽  
Bruce H. Keswick ◽  
Brian D. Ellis ◽  
...  

Contamination of drinking water by microorganisms and arsenic represents a major human health hazard in many parts of the world. An estimated 3.4 million deaths a year are attributable to waterborne diseases. Arsenic poisoning from contaminated water sources is causing a major health emergency in some countries such as Bangladesh where 35 to 77 million people are at risk.The World Health Organization (WHO) has recently recognized point-of-use water treatment as an effective means of reducing illness in developing country households. A new point-of-use water treatment system that is based on flocculation, sedimentation and disinfection was evaluated for the removal of bacterial, viral and parasitic pathogens as well as arsenic from drinking water to estimate its potential for use in developing countries.Tests were conducted with United States Environmental Protection Agency (EPA)-model and field- sample waters from developing countries. Samples were seeded with known numbers of organisms, treated with the combined flocculation/disinfection product, and assayed for survivors using standard assay techniques appropriate for the organism.Results indicated that this treatment system reduced the levels from 108/l to undetectable (<1) of 14 types of representative waterborne bacterial pathogens including Salmonella typhi and Vibrio cholerae. No Escherichia coli were detected post-treatment in 320 field water samples collected from five developing countries. In addition, the water treatment system reduced polio and rotavirus titres by greater than 4-log values. Cyrptosporidium parvum and Giardia lamblia inocula were reduced by greater than 3-log values following use of this water treatment system. Arsenic, added to laboratory test waters, was reduced by 99.8%, and naturally occurring arsenic in field samples from highly contaminated Bangladeshi wells was reduced by 99.5% to mean levels of 1.2 µg/l.This water treatment system has demonstrated the potential to provide improved drinking water to households in developing countries by removing microbial and arsenic contaminants.


Sign in / Sign up

Export Citation Format

Share Document