scholarly journals A novel gravity-driven nanofibrous membrane for point-of-use water disinfection: polydopamine-induced in situ silver incorporation

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jianqiang Wang ◽  
Yichao Wu ◽  
Zhe Yang ◽  
Hao Guo ◽  
Bin Cao ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Deepa Dixit ◽  
Virupakshi Soppina ◽  
Chinmay Ghoroi

AbstractAccess to safe drinking water is still a distant dream to millions of people around the world. Especially, people from the low-income group in the developing countries remain deprived of this fundamental right and causes millions of death. There is an urgent need to develop affordable and easy to handle water filter which can provide desired drinking water quality without any electricity. In the present work, a simple and low-cost surface engineered particle (SEP) based filter is developed via alkali treatment of soda-lime-silica particle. The SEP based filter can be used as a portable, non-electric, gravity-driven Point-of-Use (POU) water disinfection system. The developed SEP-based filter is capable to arrest the 99.48% (~2 to 2.5 log10 reduction) of gram-negative bacteria Escherichia coli (E. coli OP50) on its surface from the water containing 3 × 108 cells/ml. No bacterial regrowth is observed in the purified water for 12 h. The performance of SEP bed filter is implicated to the nano-scale surface roughness, its distribution along with the surface charge and surface hydrophobicity which are favorable to attract and adhere the bacteria in the flowing water. The observation is consistent over multiple filtration cycles indicating the suitability of SEP based bed filter for POU water disinfection. The SEP surface with 0.05 mM Ag+ loading (SEP+) completely inactivated (>99.99999%) bacteria and protects any bacteria recontamination in the purified water for its long term usage. The strong and effective silver binding property of SEP surface enables very minimal silver loading and eliminates any health hazard due to low silver leaching (~50 ppb) which is well below the drinking water equivalent level (DWEL ≤ 100 ppb). In rural and urban slum areas of developing countries where no water purification system exists prior to consumption, the easy-to-implement and affordable SEP-based gravity-driven non-electric point-of-use water purifier (materials cost ~ 0.25 USD) can be used to protect millions of lives from water borne diseases.


2016 ◽  
Vol 6 (3) ◽  
pp. 389-400 ◽  
Author(s):  
Dorcas Alfa ◽  
Sudesh Rathilal ◽  
V. L. Pillay ◽  
Kumnandi Pikwa ◽  
Martha N. Chollom

Provision of microbiologically safe drinking water for people living in the rural areas of developing countries remains a major challenge to date. A simple gravity-driven membrane point of use system was developed based on woven fabric microfiltration (WFMF) membranes. The WFMF is a loose type of membrane (0.45 μm). However, complete disinfection is not achieved with the WFMF, hence it was incorporated with two disinfectants. This study aimed to combine the WFMF with two disinfectants (WaterGuard and bromochlor tablets) to bring the water to the accepted quality for drinking. Four different types of water were sourced, considering two factors: E. coli and turbidity content. The WFMF demonstrated excellent filtration performance by producing permeates with turbidity less than 1 NTU for feed turbidity ranging between 10 and 200 NTU. There was 95–99.8% E. coli removal for raw feeds with influent E. coli ranging between 500 and 44,500 CFU/100 mL. Total disinfection was achieved with both disinfectants; however, the effectiveness of the chemical disinfectants in E. coli removal was affected by the quality of water to be disinfected. The study showed that turbidity plays a major role in disinfection performances by increasing chlorine demand on water sources with high turbidity levels.


2021 ◽  
Author(s):  
Thomas Richards ◽  
Jonathan H. Harrhy ◽  
Richard J. Lewis ◽  
Alexander G. R. Howe ◽  
Grzegorz M. Suldecki ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 4873-4882
Author(s):  
Gongyan Liu ◽  
Ruiquan Yu ◽  
Jing Jiang ◽  
Zhuang Ding ◽  
Jing Ma ◽  
...  

Point-of-use water disinfection by GA@AgNPs-LA-FP.


2021 ◽  
pp. 117825
Author(s):  
Shuang-Yu Pi ◽  
Yang Wang ◽  
Ying-Wen Lu ◽  
Guang-Li Liu ◽  
Hai-Ming Wu ◽  
...  

2019 ◽  
Vol 538 ◽  
pp. 108-115 ◽  
Author(s):  
Jianwei Wang ◽  
Xiaoqiang Pei ◽  
Ge Liu ◽  
Jianfeng Bai ◽  
Yajie Ding ◽  
...  

2021 ◽  
Author(s):  
Paloma Ozores Diez ◽  
M. Inmaculada Polo-López ◽  
Azahara Martínez-García ◽  
Monique Waso ◽  
Brandon Reyneke ◽  
...  

Abstract Solar water disinfection (SODIS) is a cost-effective point of use method for disinfecting water, usually in a 2 L polyethylene terephthalate (PET) plastic bottle. To increase the volume of water disinfected, three novel transparent reactors were developed using PET in 25 L transparent jerrycans, polymethyl methacrylate (PMMA) in tubular solar reactors capable of delivering >20 L of water and polypropylene (PP) in 20 L buckets. In vitro bioassays were used to investigate any toxic substances leached from the plastic reactors into disinfected water as a result of exposure to sunshine for up to 9 months. The Ames test was used to test for mutagenicity and the E-screen bioassay to test for estrogenicity. No mutagenicity was detected in any sample and no estrogenicity was found in the SODIS treated water produced by the PMMA reactors or the PP buckets. While water disinfected using the PET reactors showed no estrogenicity following exposure to the sun for 3 and 6 months, estrogenicity was detected following 9 months' exposure to sunlight; however levels detected were within the acceptable daily intake for 17β-estradiol (E2) of up to 50 ng/kg body weight/day.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Adam Teusner ◽  
Rhett Butler ◽  
Pierre Le Clech

Fluoride concentrations in drinking water in excess of 1.5 mg L-1 are unsafe for human consumption. To reduce excess fluoride intake, developing countries must use low-cost, point-of-use defluoridation techniques. Although previous work has extensively assessed defluoridation using bone char (BC), most of the advanced studies have been based on the use of fluoridated distilled water as a feed solution. In the present study, BC columns were challenged with a range of model solutions, mimicking various pretreatment options. As a result, the relative impact of dissolved organic carbon (DOC) and suspended solids (SS) on the performance of BC filters was assessed. In addition, the performance of a gravity-driven, hollow fibre ultrafiltration (UF) module was examined with regards to the potential for use as a pretreatment option. SS were observed to severely clog the columns and cause the complete cessation of flow. The subsequent removal of SS by UF improved the general filter performance as well as increasing the BC lifetime by 50 %. The UF module achieved a reduction in DOC of 34 ± 6 %, resulting in an additional 30 % increase in the lifetime of the BC column.


Sign in / Sign up

Export Citation Format

Share Document