scholarly journals Photogenerated Carrier Transport Properties in Silicon Photovoltaics

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Prakash Uprety ◽  
Indra Subedi ◽  
Maxwell M. Junda ◽  
Robert W. Collins ◽  
Nikolas J. Podraza

AbstractElectrical transport parameters for active layers in silicon (Si) wafer solar cells are determined from free carrier optical absorption using non-contacting optical Hall effect measurements. Majority carrier transport parameters [carrier concentration (N), mobility (μ), and conductivity effective mass (m*)] are determined for both the n-type emitter and p-type bulk wafer Si of an industrially produced aluminum back surface field (Al-BSF) photovoltaic device. From measurements under 0 and ±1.48 T external magnetic fields and nominally “dark” conditions, the following respective [n, p]-type Si parameters are obtained: N = [(3.6 ± 0.1) × 1018 cm−3, (7.6 ± 0.1) × 1015 cm−3]; μ = [166 ± 6 cm2/Vs, 532 ± 12 cm2/Vs]; and m* = [(0.28 ± 0.03) × me, (0.36 ± 0.02) × me]. All values are within expectations for this device design. Contributions from photogenerated carriers in both regions of the p-n junction are obtained from measurements of the solar cell under “light” 1 sun illumination (AM1.5 solar irradiance spectrum). From analysis of combined dark and light optical Hall effect measurements, photogenerated minority carrier transport parameters [minority carrier concentration (Δp or Δn) and minority carrier mobility (μh or μe)] under 1 sun illumination for both n- and p-type Si components of the solar cell are determined. Photogenerated minority carrier concentrations are [(7.8 ± 0.2) × 1016 cm−3, (2.2 ± 0.2) × 1014 cm−3], and minority carrier mobilities are [331 ± 191 cm2/Vs, 766 ± 331 cm2/Vs], for the [n, p]-type Si, respectively, values that are within expectations from literature. Using the dark majority carrier concentration and the effective equilibrium minority carrier concentration under 1 sun illumination, minority carrier effective lifetime and diffusion length are calculated in the n-type emitter and p-type wafer Si with the results also being consistent with literature. Solar cell device performance parameters including photovoltaic device efficiency, open circuit voltage, fill factor, and short circuit current density are also calculated from these transport parameters obtained via optical Hall effect using the diode equation and PC1D solar cell simulations. The calculated device performance parameters are found to be consistent with direct current-voltage measurement demonstrating the validity of this technique for electrical transport property measurements of the semiconducting layers in complete Si solar cells. To the best of our knowledge, this is the first method that enables determination of both minority and majority carrier transport parameters in both active layers of the p-n junction in a complete solar cell.

2018 ◽  
Vol 31 (3) ◽  
pp. 20
Author(s):  
Sarmad M. M. Ali ◽  
Alia A.A. Shehab ◽  
Samir A. Maki

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hall effect measurements of ZnTe , ZnTe:Cu films show that all films were (p-type), the carrier concentration (1.1×1020 m-3) , Hall mobility (0.464m2/V.s) for pure ZnTe film, increases the carrier concentration (6.3×1021m-3) Hall mobility (2m2/V.s) for doping (Cu at 3%) film, but  decreases by increasing Cu concentration.


1995 ◽  
Vol 67 (1) ◽  
pp. 88-90 ◽  
Author(s):  
D. C. Leung ◽  
P. R. Nelson ◽  
O. M. Stafsudd ◽  
J. B. Parkinson ◽  
G. E. Davis

Carbon ◽  
1999 ◽  
Vol 37 (5) ◽  
pp. 811-816 ◽  
Author(s):  
S. Salvatori ◽  
M. C. Rossi ◽  
F. Galluzzi

2003 ◽  
Vol 764 ◽  
Author(s):  
Leonid Chernyak ◽  
William Burdett

AbstractElectron injection into p-type GaN and related compounds leads to a pronounced increase in the minority carrier lifetime. This increase is manifested in a multiple-fold elongation of the minority carrier diffusion length as is evident from the Electron Beam Induced Current (EBIC) measurements in-situ in a Scanning Electron Microscope. Minority carrier transport enhancement as a result of electron injection is consistent with the changes observed in the material's luminescent properties. Based on the activation energy for the electron injection-induced effects, we ascribe this phenomenon to charging of Mg-acceptor related levels. In addition, we demonstrate an impact of electron injection on responsivity of GaN p-i-n photodetectors.


Sign in / Sign up

Export Citation Format

Share Document