scholarly journals Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shalini Nagabooshanam ◽  
Souradeep Roy ◽  
Ashish Mathur ◽  
Irani Mukherjee ◽  
Satheesh Krishnamurthy ◽  
...  

AbstractAn Electrochemical micro Analytical Device (EµAD) was fabricated for sensitive detection of organophosphate pesticide chlorpyrifos in the food chain. Gold microelectrode (µE) modified with Zinc based Metal Organic Framework (MOF-Basolite Z1200) and Acetylcholinesterase (AChE) enzyme served as an excellent electro-analytical transducer for the detection of chlorpyrifos. Electrochemical techniques such as Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV) were performed for electrochemical analysis of the developed EµAD. The sensor needs only 2 µL of the analyte and it was tested within the linear range of 10 to 100 ng/L. The developed EµAD’s limit of detection (LoD) and sensitivity is 6 ng/L and 0.598 µ A/ng L−1/mm2 respectively. The applicability of the device for the detection of chlorpyrifos from the real vegetable sample was also tested within the range specified. The fabricated sensor showed good stability with a shelf-life of 20 days. The EµAD’s response time is of 50 s, including an incubation time of 20 s. The developed EµAD was also integrated with commercially available low-cost, handheld potentiostat (k-Stat) using Bluetooth and the results were comparable with a standard electrochemical workstation.

2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


Hydrogen ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 58-75
Author(s):  
Sheng-Mu You ◽  
Waleed M. A. El Rouby ◽  
Loïc Assaud ◽  
Ruey-An Doong ◽  
Pierre Millet

Photoanodes comprising a transparent glass substrate coated with a thin conductive film of fluorine-doped tin oxide (FTO) and a thin layer of a photoactive phase have been fabricated and tested with regard to the photo-electro-oxidation of water into molecular oxygen. The photoactive layer was made of a mat of TiO2 nanorods (TDNRs) of micrometric thickness. Individual nanorods were successfully photosensitized with nanoparticles of a metal–organic framework (MOF) of nickel and 1,2-benzene dicarboxylic acid (BDCA). Detailed microstructural information was obtained from SEM and TEM analysis. The chemical composition of the active layer was determined by XRD, XPS and FTIR analysis. Optical properties were determined by UV–Vis spectroscopy. The water photooxidation activity was evaluated by linear sweep voltammetry and the robustness was assessed by chrono-amperometry. The OER (oxygen evolution reaction) photo-activity of these photoelectrodes was found to be directly related to the amount of MOF deposited on the TiO2 nanorods, and was therefore maximized by adjusting the MOF content. The microscopic reaction mechanism which controls the photoactivity of these photoelectrodes was analyzed by photo-electrochemical impedance spectroscopy. Microscopic rate parameters are reported. These results contribute to the development and characterization of MOF-sensitized OER photoanodes.


2019 ◽  
Vol 9 (22) ◽  
pp. 4952 ◽  
Author(s):  
Sushma Rani ◽  
Bharti Sharma ◽  
Shivani Kapoor ◽  
Rajesh Malhotra ◽  
Rajender S. Varma ◽  
...  

In the present study, we report a highly effective electrochemical sensor for detecting 2,4-dinitrotoluene (2,4-DNT). The amperometric determination of 2,4-DNT was carried out using a gold electrode modified with zinc–metal organic framework-8 and silver quantum dot (Zn-MOF-8@AgQDs) composite. The synthesized nanomaterials were characterized by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The synthesized nanocomposite proved to be efficient in electro-catalysis thereby reducing the 2,4-DNT. The unique combination present in Zn-MOF-8@AgQDs composite offered an excellent conductivity and large surface area enabling the fabrication of a highly sensitive (−0.238 µA µM−1 cm−2), selective, rapid and stable 2,4-DNT sensor. The dynamic linear range and limit of detection (LOD) was about 0.0002 µM to 0.9 µM and 0.041 µM, respectively. A 2,4-DNT reduction was also observed during the linear sweep voltammetry (LSV) experiments with reduction peaks at −0.49 V and −0.68 V. This is an unprecedented report with metal organic framework (MOF) composite for sensing 2,4-DNT. In addition, the presence of other species such as thiourea, urea, ammonia, glucose, and ascorbic acid displayed no interference in the modified electrode suggesting its practicability in various environmental applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 40211-40218 ◽  
Author(s):  
Elham Tahmasebi ◽  
Mohammad Yaser Masoomi ◽  
Yadollah Yamini ◽  
Ali Morsali

A solid-phase extraction (SPE) sorbent, a Zn(ii) based metal–organic framework, was prepared via a simple, solventless, green and a low-cost mechanosynthesis process.


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1063 ◽  
Author(s):  
Aisha Asghar ◽  
Naseem Iqbal ◽  
Tayyaba Noor ◽  
Majid Ali ◽  
Timothy L. Easun

Herein we report a facile, efficient, low cost, and easily scalable route for an amine-functionalized MOF (metal organic framework) synthesis. Cu-BDC⊃HMTA (HMTA = hexamethylenetetramine) has high nitrogen content and improved thermal stability when compared with the previously reported and well-studied parent Cu-BDC MOF (BDC = 1,4-benzenedicarboxylate). Cu-BDC⊃HMTA was obtained via the same synthetic method, but with the addition of HMTA in a single step synthesis. Thermogravimetric studies reveal that Cu-BDC⊃HMTA is more thermally stable than Cu-BDC MOF. Cu-BDC⊃HMTA exhibited a CO2 uptake of 21.2 wt % at 273 K and 1 bar, which compares favorably to other nitrogen-containing MOF materials.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2015 ◽  
Author(s):  
Feng Zhang ◽  
Shuyi Chen ◽  
Shengqiang Nie ◽  
Jun Luo ◽  
Shaomin Lin ◽  
...  

In this study, a lanthanide metal organic framework based on the ligand of terephthalic acid derived from waste polyethylene terephthalate (PET) bottles was designed and synthesized. The structure and morphology of the Tb-BDC was investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The Tb-BDC displays a high selectivity and sensitivity towards picric acid (TNP). The luminescence intensities exhibit a linear relation, with a concentration of TNP over the range of 1 × 10−5–1 × 10−4 M, with a limit of detection of 1 × 10−5 M. The sensing mechanism is also discussed. This is the first time that waste PET materials have been used as the starting precursor of terephthalic acid (BDC) for the fabrication of lanthanide MOF (metal organic framework), which is applied in sensing TNP.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 185
Author(s):  
Kai Song ◽  
Han Yu ◽  
Jingyi Zhang ◽  
Yumeng Bai ◽  
Yanjun Guan ◽  
...  

A rosebengal-modified nanoporous structure was designed and constructed. This composite structure consisted of an organic sensitizer based on rosebengal and a supporting host of rare earth metal-organic-framework (MOF). It was identified by means of its x-ray diffraction (XRD) pattern, Infrared (IR) spectra, thermal stability and photophysical measurements. Its absorption was increased by 2,4,6-trinitrophenol. Its rosebengal emission was proportionally increased. But its rare earth emission was well-preserved, offering ratiometric signals. These two sensing modes exhibited linear response and good selectivity with a limit of detection (LOD) of 1.9 μM. Its sensing nature was confirmed as the combination of increased rosebengal emission and rare earth emission quenching effect triggered electron-deficient molecules. This nanoporous structure was superior to traditional ones owing to its double sensing modes.


2017 ◽  
Vol 121 (2) ◽  
pp. 1171-1181 ◽  
Author(s):  
Matthew Witman ◽  
Sanliang Ling ◽  
Andrzej Gladysiak ◽  
Kyriakos C. Stylianou ◽  
Berend Smit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document