scholarly journals Measurement of diallyl disulfide and allyl methyl sulfide emanating from human skin surface and influence of ingestion of grilled garlic

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shodai Sato ◽  
Yoshika Sekine ◽  
Yuya Kakumu ◽  
Tadahiro Hiramoto
1963 ◽  
Vol 41 (5) ◽  
pp. 265-268 ◽  
Author(s):  
Thomas J Cook ◽  
Allan L Lorincz ◽  
Alan R Spector

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 700
Author(s):  
Yohannes Abere Ambaw ◽  
Martin P. Pagac ◽  
Antony S. Irudayaswamy ◽  
Manfred Raida ◽  
Anne K. Bendt ◽  
...  

Malassezia are common components of human skin, and as the dominant human skin eukaryotic microbe, they take part in complex microbe–host interactions. Other phylogenetically related fungi (including within Ustilagomycotina) communicate with their plant host through bioactive oxygenated polyunsaturated fatty acids, generally known as oxylipins, by regulating the plant immune system to increase their virulence. Oxylipins are similar in structure and function to human eicosanoids, which modulate the human immune system. This study reports the development of a highly sensitive mass-spectrometry-based method to capture and quantify bioactive oxygenated polyunsaturated fatty acids from the human skin surface and in vitro Malassezia cultures. It confirms that Malassezia are capable of synthesizing eicosanoid-like lipid mediators in vitro in a species dependent manner, many of which are found on human skin. This method enables sensitive identification and quantification of bioactive lipid mediators from human skin that may be derived from metabolic pathways shared between skin and its microbial residents. This enables better cross-disciplinary and detailed studies to dissect the interaction between Malassezia and human skin, and to identify potential intervention points to promote or abrogate inflammation and to improve human skin health.


ADMET & DMPK ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 75 ◽  
Author(s):  
Hanan Osman-Ponchet ◽  
Alexandre Gaborit ◽  
Jean-Michel Linget ◽  
Claire E. Wilson

<p class="ADMETabstracttext">It is clear that many drug transporters (both ABCs and SLCs) are present in the human skin. Different in vitro skin models can be used to investigate the role of drug transporters in the skin despite quantitative differences in expression profile across species. P-gp was shown to have an important influence on transdermal drug absorption in the skin and to function in “absorptive” transport, carrying substrate drugs from the skin surface to the dermis. This observation might be used to modulate drug distribution inside the skin. If drugs can be retained in the epidermis compartment by inhibition of the transporters, such property of the drug would be beneficial for treatment of dermatological diseases. Therefore, it might be feasible to control transdermal delivery of drugs to specific locations in the skin, by modulating the function of the transporters in the skin. We are at the dawn of an exciting period where drug transporters might be novel targets for improvement of drug delivery to the skin and for pharmacological intervention.</p>


2021 ◽  
Author(s):  
Marc Domingo ◽  
Jordi Faraudo

The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of the virus-skin interactions. In the case of coronaviruses, the interaction with surfaces (including the skin surface) is mediated by their large glycoprotein spikes that protrude from (and cover) the viral envelope. Here, we perform all atomic simulations between the SARS-CoV-2 spike glycoprotein and human skin models. We consider an "oily" skin covered by sebum and a "clean" skin exposing the stratum corneum. The simulations show that the spike tries to maximize the contacts with stratum corneum lipids, particularly ceramides, with substantial hydrogen bonding. In the case of "oily" skin, the spike is able to retain its structure, orientation and hydration over sebum with little interaction with sebum components. Comparison of these results with our previous simulations of the interaction of SARS-CoV-2 spike with hydrophilic and hydrophobic solid surfaces, suggests that the"soft" or "hard" nature of the surface plays an essential role in the interaction of the spike protein with materials.


Sign in / Sign up

Export Citation Format

Share Document