Evaluation of a human skin surface temperature for the protective clothing – Skin system based on the protective clothing–skin imitating material results

Author(s):  
Piotr Furmański ◽  
Piotr Łapka
2015 ◽  
Vol 27 (6) ◽  
pp. 818-834 ◽  
Author(s):  
Ming Fu ◽  
Wenguo Weng ◽  
Hongyong Yuan

Purpose – The purpose of this paper is to study the combined effects of moisture and radiation on thermal protective performance of protective clothing exposed to low level radiation. Design/methodology/approach – Using a sweating manikin, the effect of radiation and moisture on heat and moisture transfer was initially analyzed under the dry manikin with sweating rate of 100 g/(m2h) exposed to 2.5 kW/m2, and then studied at 200 and 300 g/(m2h) exposed to 2 and 3 kW/m2, respectively. Finally, the combined effects of thermal radiation and moisture were predicted by fitting the relationships among heat loss and wet skin surface temperature, with the sweating rate and radiation intensity. Findings – The results show that the heat loss and the wet skin surface temperature are affected by the combined effects of moisture and radiation, with two distinctly different trends. Heat loss from the manikin is increasing with the sweating rate, and decreasing with thermal radiation intensity. However, the wet skin surface temperature has an opposite situation. Originality/value – Two filling equations are given to present the relationships among heat loss and wet skin surface temperature, with the sweating rate and radiation intensity. With these two equations, the heat loss and the wet skin surface temperature when exposed to radiation can be predicted by only measuring the mean radiant and ambient temperatures and controlling the sweating rate.


2019 ◽  
Vol 31 (3) ◽  
pp. 349 ◽  
Author(s):  
Chan Mi Lee ◽  
Seon-Pil Jin ◽  
Eun Jin Doh ◽  
Dong Hun Lee ◽  
Jin Ho Chung

2021 ◽  
Vol 30 (8) ◽  
pp. 632-641
Author(s):  
Sumiati Tarigan ◽  
Saldy Yusuf ◽  
Yuliana Syam

Objective: This study aimed to evaluate the interface pressure and skin surface temperature in relation to the incidence of pressure injury (PI) using three different turning schedules. Method: This was a pilot study with a three-armed randomised clinical trial design. Participants at risk of PI and treated in the high dependency care unit in a regional hospital in Makassar, Indonesia participated in this study. Patients were repositioned at three different turning schedules (two-, three- and four-hourly intervals). Interface pressure measurement and skin surface temperature were measured between 14:00 and 18:00 every three days. The incidence of PI was assessed during the two-week observation period. Results: A total of 44 participants took part in the study. A one-way ANOVA test revealed no difference in interface pressure among the three different turning schedule groups within two weeks of observations: day zero, p=0.56; day four, p=0.95; day seven, p=0.56; day 10, p=0.63; and day 14, p=0.92. Although the average periumbilical temperature and skin surface temperature were not significant (p>0.05), comparison between these observation sites was significant on all observation days (p<0.05). Regarding the incidence of PI, the proportional hazard test for the development of PI in the three groups was considered not different (hazard ratio: 1.46, 95% confidence interval: 0.43–4.87, p=0.54). Conclusion: No difference in interface pressure and incidence of PI on the three turning schedules was observed; however, there was a potential increase in skin surface temperature in comparison with periumbilical temperature for all three turning schedules.


2018 ◽  
Vol 85 (2) ◽  
pp. 201-203 ◽  
Author(s):  
Chunhe Yang ◽  
Gan Li ◽  
Xiaojun Zhang ◽  
Xianhong Gu

The objectives of the research reported in this Research Communication were to compare the variation of hind quarter skin surface temperature pre- and post- milking in dairy cows and to determine the optimal time to capture images by infrared thermography for improving the sensitivity and specificity of mastitis detection in dairy cows. Hind quarter infrared images of 102 Holstein dairy cows were captured from the caudal view by an infrared camera pre-milking and post-milking. The udder skin surface temperature was measured with the help of the image processing software. No significant difference was found between the left and right quarter skin surface temperature pre- and post- milking. The hind quarter skin surface temperature pre-milking was not significantly influenced by milk yield, but exhibited a rising trend along with the increase of milk yield. The hind quarter skin surface temperature post-milking was significantly influenced by milk yield. This leads us to conclude that the sensitivity and specificity of IRT in mastitis detection may be influenced by milk yield and it may be better to capture the infrared images of cow udders pre-milking.


Sign in / Sign up

Export Citation Format

Share Document