scholarly journals Interaction between SARS-CoV-2 spike glycoprotein and human skin models: a molecular dynamics study

2021 ◽  
Author(s):  
Marc Domingo ◽  
Jordi Faraudo

The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of the virus-skin interactions. In the case of coronaviruses, the interaction with surfaces (including the skin surface) is mediated by their large glycoprotein spikes that protrude from (and cover) the viral envelope. Here, we perform all atomic simulations between the SARS-CoV-2 spike glycoprotein and human skin models. We consider an "oily" skin covered by sebum and a "clean" skin exposing the stratum corneum. The simulations show that the spike tries to maximize the contacts with stratum corneum lipids, particularly ceramides, with substantial hydrogen bonding. In the case of "oily" skin, the spike is able to retain its structure, orientation and hydration over sebum with little interaction with sebum components. Comparison of these results with our previous simulations of the interaction of SARS-CoV-2 spike with hydrophilic and hydrophobic solid surfaces, suggests that the"soft" or "hard" nature of the surface plays an essential role in the interaction of the spike protein with materials.

Soft Matter ◽  
2021 ◽  
Author(s):  
Marc Domingo ◽  
Jordi Faraudo

The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shigeyuki Ono ◽  
Nobuhiko Eda ◽  
Takuya Mori ◽  
Atsuko Otsuka ◽  
Nobuhiro Nakamura ◽  
...  

Abstract Antimicrobial peptides (AMPs) play an important role in innate immunity in human skin. It is known that AMPs mainly function in the stratum corneum. Therefore, AMP concentrations in the stratum corneum need to be precisely measured to clarify functional and physiological importance of AMPs in cutaneous defence. Tape stripping (TS) is a well-established method by which components in the stratum corneum can be collected. However, the usefulness of the TS method for measuring AMP concentration in human skin remains unclear. Therefore, we compared it with another popular method, skin rinsing, which had been established as a method for measuring AMP concentration in human skin. When investigated on healthy medial forearm using RNase 7, which is one of the typical AMPs, as an index, there was a significant positive correlation between RNase 7 concentrations measured by the TS method at adjacent forearm sites, demonstrating the reproducibility of the TS method. Next, a significant positive correlation was detected in RNase 7 concentrations measured using the TS and the skin rinsing method, indicating that the TS method is comparable to the skin rinsing method. Thus, we speculate that the TS method is useful for measuring AMP concentration in human skin.


Author(s):  
S. A. Malcolm

SynopsisAn in vivo staining technique has been developed for the demonstration of micro-organisms on human skin. This technique permits the study of the relationship between micro-organisms and the stratum corneum and its associated structures. It also aids an understanding of the factors involved in the nutrition and survival of micro-organisms on the skin surface.In skin sites with large populations of coryneform species the bacteria tend to accumulate at the edges of corneocytes. This tendency is not shared by members of the micrococcaceae.Agar impressions of the skin surface confirm observations of other workers and suggest that the surface of the stratum corneum is composed of domed corneocytes with a network of troughs or channels surrounding them. It is proposed that the association of coryneform bacteria with the edges of corneocytes may be due to the creation of an environment within the troughs which favours microbial colonisation.


1985 ◽  
Vol 58 (5) ◽  
pp. 1536-1545 ◽  
Author(s):  
J. E. Baumgardner ◽  
D. J. Graves ◽  
G. R. Neufeld ◽  
J. A. Quinn

The flux of He and O2 through intact adult human skin was measured at various inspired concentrations and skin temperatures. The skin surface was then stripped with cellophane tape to alter the diffusional conductance of the stratum corneum. He flux for stripped skin was used to estimate skin perfusion as a function of local temperature, and diffusional conductance for O2 was estimated from O2 flux and perfusion. The flux of He or O2 at constant skin temperature can be related to inspired concentration by a simple linear model. Increasing surface temperature in the range 33–43 degrees C produced a much larger increase in O2 flux than in He flux for intact skin. Skin stripping greatly increased skin O2 flux. Estimated skin conductance for O2 showed a more marked temperature dependence than estimated skin perfusion. The results suggest that raising skin temperature in the range 38–43 degrees C has only a modest effect on skin perfusion and that stratum corneum conductance may have a major role in the large increase of O2 flux with temperature.


2013 ◽  
Vol 336-338 ◽  
pp. 319-326 ◽  
Author(s):  
Yu Xing He ◽  
Yong Gui Dong

A pair of concentrically placed gold electrodes is utilized in contact with human skin surface for moisture evaluation. The electrical impedance spectroscopy is measured within a frequency range of 100Hz to 5MHz. It is showed that, in case of relatively dried stratum corneum, reproducibility of measured impedances will decrease significantly in lower frequency range. The integrality of impedance frequency locus is correspondingly dependent on skin moist state. On the other hand, in case of relatively wetted stratum corneum, an integral locus can be obtained and Cole-Cole arc model can be applied for quantitative calculation. The integrality of the locus is introduced as a supplemental parameter. Experimental results with moistened filter paper as well as human skin indicate that, the skin moisture can be better represented both graphically and quantitatively.


Author(s):  
R. R. Warner

Keratinocytes undergo maturation during their transit through the viable layers of skin, and then abruptly transform into flattened, anuclear corneocytes that constitute the cellular component of the skin barrier, the stratum corneum (SC). The SC is generally considered to be homogeneous in its structure and barrier properties, and is often shown schematically as a featureless brick wall, the “bricks” being the corneocytes, the “mortar” being intercellular lipid. Previously we showed the outer SC was not homogeneous in its composition, but contained steep gradients of the physiological inorganic elements Na, K and Cl, likely originating from sweat salts. Here we show the innermost corneocytes in human skin are also heterogeneous in composition, undergoing systematic changes in intracellular element concentration during transit into the interior of the SC.Human skin biopsies were taken from the lower leg of individuals with both “good” and “dry” skin and plunge-frozen in a stirred, cooled isopentane/propane mixture.


Sign in / Sign up

Export Citation Format

Share Document