scholarly journals Temperature Dependency of Proton Pumping Activity for Marine Microbial Rhodopsin from Antartic Ocean

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Se-Hwan Kim ◽  
ByungHoon Jung ◽  
Soon Gyu Hong ◽  
Kwang-Hwan Jung
Biochemistry ◽  
1998 ◽  
Vol 37 (7) ◽  
pp. 2037-2043 ◽  
Author(s):  
Tiziana Cocco ◽  
Marco Di Paola ◽  
Sergio Papa ◽  
Michele Lorusso

1985 ◽  
Vol 37 (3) ◽  
pp. 189-193 ◽  
Author(s):  
Maria Cecilia Cocucci ◽  
Maria Ida De Michelis ◽  
Maria Chiara Pugliarello ◽  
Franca Rasi-Caldogno

2018 ◽  
Vol 29 (17) ◽  
pp. 2113-2127 ◽  
Author(s):  
Akshay Moharir ◽  
Lincoln Gay ◽  
Daniel Appadurai ◽  
James Keener ◽  
Markus Babst

Eisosomes are lipid domains of the yeast plasma membrane that share similarities to caveolae of higher eukaryotes. Eisosomes harbor APC-type nutrient transporters for reasons that are poorly understood. Our analyses support the model that eisosomes function as storage compartments, keeping APC transporters in a stable, inactive state. By regulating eisosomes, yeast is able to balance the number of proton-driven APC transporters with the proton-pumping activity of Pma1, thereby maintaining the plasma membrane proton gradient. Environmental or metabolic changes that disrupt the proton gradient cause the rapid restructuring of eisosomes and results in the removal of the APC transporters from the cell surface. Furthermore, we show evidence that eisosomes require the presence of APC transporters, suggesting that regulating activity of nutrient transporters is a major function of eisosomes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Masumi Hasegawa ◽  
Toshiaki Hosaka ◽  
Keiichi Kojima ◽  
Yosuke Nishimura ◽  
Yu Nakajima ◽  
...  

Abstract Microbial rhodopsin is a photoreceptor protein found in various bacteria and archaea, and it is considered to be a light-utilization device unique to heterotrophs. Recent studies have shown that several cyanobacterial genomes also include genes that encode rhodopsins, indicating that these auxiliary light-utilizing proteins may have evolved within photoautotroph lineages. To explore this possibility, we performed a large-scale genomic survey to clarify the distribution of rhodopsin and its phylogeny. Our surveys revealed a novel rhodopsin clade, cyanorhodopsin (CyR), that is unique to cyanobacteria. Genomic analysis revealed that rhodopsin genes show a habitat-biased distribution in cyanobacterial taxa, and that the CyR clade is composed exclusively of non-marine cyanobacterial strains. Functional analysis using a heterologous expression system revealed that CyRs function as light-driven outward H+ pumps. Examination of the photochemical properties and crystal structure (2.65 Å resolution) of a representative CyR protein, N2098R from Calothrix sp. NIES-2098, revealed that the structure of the protein is very similar to that of other rhodopsins such as bacteriorhodopsin, but that its retinal configuration and spectroscopic characteristics (absorption maximum and photocycle) are distinct from those of bacteriorhodopsin. These results suggest that the CyR clade proteins evolved together with chlorophyll-based photosynthesis systems and may have been optimized for the cyanobacterial environment.


Inorganics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 38
Author(s):  
Janik Telleria Marloth ◽  
Constanze Pinske

Fermentative hydrogen production by enterobacteria derives from the activity of the formate hydrogenlyase (FHL) complex, which couples formate oxidation to H2 production. The molybdenum-containing formate dehydrogenase and type-4 [NiFe]-hydrogenase together with three iron-sulfur proteins form the soluble domain, which is attached to the membrane by two integral membrane subunits. The FHL complex is phylogenetically related to respiratory complex I, and it is suspected that it has a role in energy conservation similar to the proton-pumping activity of complex I. We monitored the H2-producing activity of FHL in the presence of different concentrations of the protonophore CCCP. We found an inhibition with an apparent EC50 of 31 µM CCCP in the presence of glucose, a higher tolerance towards CCCP when only the oxidizing hydrogenase Hyd-1 was present, but a higher sensitivity when only Hyd-2 was present. The presence of 200 mM monovalent cations reduced the FHL activity by more than 20%. The Na+/H+ antiporter inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) combined with CCCP completely inhibited H2 production. These results indicate a coupling not only between Na+ transport activity and H2 production activity, but also between the FHL reaction, proton import and cation export.


Biochemistry ◽  
1988 ◽  
Vol 27 (1) ◽  
pp. 296-301 ◽  
Author(s):  
Thomas Nilsson ◽  
Jeff Gelles ◽  
Peter Mark Li ◽  
Sunney I. Chan

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Fatemeh Madani ◽  
Alex Perálvarez-Marín ◽  
Astrid Gräslund

Detergent-mediated reconstitution of bacteriorhodopsin (BR) into large unilamellar vesicles (LUVs) was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG) as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.


Sign in / Sign up

Export Citation Format

Share Document