scholarly journals Eisosomes are metabolically regulated storage compartments for APC-type nutrient transporters

2018 ◽  
Vol 29 (17) ◽  
pp. 2113-2127 ◽  
Author(s):  
Akshay Moharir ◽  
Lincoln Gay ◽  
Daniel Appadurai ◽  
James Keener ◽  
Markus Babst

Eisosomes are lipid domains of the yeast plasma membrane that share similarities to caveolae of higher eukaryotes. Eisosomes harbor APC-type nutrient transporters for reasons that are poorly understood. Our analyses support the model that eisosomes function as storage compartments, keeping APC transporters in a stable, inactive state. By regulating eisosomes, yeast is able to balance the number of proton-driven APC transporters with the proton-pumping activity of Pma1, thereby maintaining the plasma membrane proton gradient. Environmental or metabolic changes that disrupt the proton gradient cause the rapid restructuring of eisosomes and results in the removal of the APC transporters from the cell surface. Furthermore, we show evidence that eisosomes require the presence of APC transporters, suggesting that regulating activity of nutrient transporters is a major function of eisosomes.

1985 ◽  
Vol 37 (3) ◽  
pp. 189-193 ◽  
Author(s):  
Maria Cecilia Cocucci ◽  
Maria Ida De Michelis ◽  
Maria Chiara Pugliarello ◽  
Franca Rasi-Caldogno

2001 ◽  
Vol 114 (2) ◽  
pp. 193-197
Author(s):  
Minobu Kasai ◽  
Kanji Kasai ◽  
Hidehiro Hayashi ◽  
Shinichi Sawada

1995 ◽  
Vol 42 (4) ◽  
pp. 481-496 ◽  
Author(s):  
B C Monk ◽  
A B Mason ◽  
T B Kardos ◽  
D S Perlin

The need for new mechanistic classes of broad spectrum antifungal agents has prompted development of the membrane sector and ectodomain of the plasma membrane proton pumping ATPase as an antifungal target. The fungal proton pump is a highly abundant, essential enzyme in Saccharomyces cerevisiae. It belongs to the family of P-type ATPases, a class of enzymes that includes the Na+,K(+)-ATPase and the gastric H+,K(+)-ATPase. These enzymes are cell surface therapeutic targets for the cardiac glycosides and several anti-ulcer drugs, respectively. The effects of acid-activated omeprazole show that extensive inhibition of the S. cerevisiae ATPase is fungicidal. Fungal proton pumps possess elements within their transmembrane loops that distinguish them from other P-type ATPases. These loops, such as the conformationally sensitive transmembrane loop 1+2, can attenuate the activity of the enzyme. Expression in S. cerevisiae of fully functional chimeric ATPases that contain a foreign target comprising transmembrane loops 1+2 and/or 3+4 from the fungal pathogen Candida albicans suggests that these loops operate as a domain. The chimera containing C. albicans transmembrane loops 1+2 and 3+4 provides a prototype for mutational analysis of the target region and the screening of inhibitors directed against opportunistic fungal pathogens. Panels of mutants with modified ATPase regulation or with altered cell surface cysteine residues are also described. Information about the ATPase membrane sector and ectodomain has been integrated into a model of this region.


2005 ◽  
Vol 280 (23) ◽  
pp. 22515-22522 ◽  
Author(s):  
Barbara Gaigg ◽  
Birgit Timischl ◽  
Linda Corbino ◽  
Roger Schneiter

The proton pumping H+-ATPase, Pma1p, is an abundant and very long-lived polytopic protein of the Saccharomyces cerevisiae plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as an excellent model to study plasma membrane biogenesis. We have previously shown that newly synthesized Pma1p is mistargeted to the vacuole in an elo3Δ mutant that affects the synthesis of the ceramide-bound C26 very long chain fatty acid (Eisenkolb, M., Zenzmaier, C., Leitner, E., and Schneiter, R. (2002) Mol. Biol. Cell 13, 4414–4428) and now describe a more detailed analysis of the role of lipids in Pma1p biogenesis. Remarkably, a block at various steps of sterol biosynthesis, a complete block in sterol synthesis, or the substitution of internally synthesized ergosterol by externally supplied ergosterol or even by cholesterol does not affect Pma1p biogenesis or its association with detergent-resistant membrane domains (lipid “rafts”). However, a block in sphingolipid synthesis or any perturbation in the synthesis of the ceramide-bound C26 very long chain fatty acid results in mistargeting of newly synthesized Pma1p to the vacuole. Mistargeting correlates with a lack of newly synthesized Pma1p to acquire detergent resistance, suggesting that sphingolipids with very long acyl chains affect sorting of Pma1p to the cell surface.


1990 ◽  
Vol 36 (3) ◽  
pp. 183-192 ◽  
Author(s):  
A. R. Hardham ◽  
E. Suzaki

Glycoconjugates on the surface of zoospores and cysts of the pathogenic fungus Phytophthora cinnamomi have been studied using fluorescein isothiocyanate labelled lectins for fluorescence microscopy and flow cytometry, and ferritin- and gold-labelled lectins for ultrastructural analysis. Of the five lectins used, only concanavalin A (ConA) binds to the surface of the zoospores, including the flagella and water expulsion vacuole. This suggests that of accessible saccharides, glucosyl or mannosyl residues predominate on the outer surface of the zoospore plasma membrane. Early in encystment, a system of flat disc-like cisternae, which underlie the zoospore plasma membrane, vesiculate. These and other small peripheral vesicles quickly disappear. After the induction of encystment, ConA is no longer localised close to the plasma membrane but binds to material loosely associated with the cell surface. Quantitative measurements by flow cytometry indicate that the ConA-binding material is gradually lost from the cell surface. The cyst wall is weakly labelled, but the site of germ tube emergence stains intensely. During the first 2 min after the induction of encystment, material that binds soybean agglutinin, Helix pommatia agglutinin, and peanut agglutinin appears on the surface of the fungal cells. The distribution of this material, rich in galactosyl or N-acetyl-D-galactosaminosyl residues, is initially patchy, but by 5 min the material evenly coats most of the cell surface. Labelling of zoospores in which intracellular sites are accessible indicates that the soybean agglutinin binding material is stored in vesicles that lie beneath the plasma membrane. Quantitation of soybean agglutinin labelling shows that maximum binding occurs 2–3 min after the induction of encystment. Key words: cell surface, flow cytometry, lectins, pathogenic fungi, Phytophthora cinnamomi.


Biochemistry ◽  
1998 ◽  
Vol 37 (7) ◽  
pp. 2037-2043 ◽  
Author(s):  
Tiziana Cocco ◽  
Marco Di Paola ◽  
Sergio Papa ◽  
Michele Lorusso

1972 ◽  
Vol 135 (6) ◽  
pp. 1392-1405 ◽  
Author(s):  
Charles J. Sherr ◽  
Sonia Baur ◽  
Inge Grundke ◽  
Joseph Zeligs ◽  
Barbara Zeligs ◽  
...  

Cells from an established line of Burkitt lymphoma (Daudi) were enzymatically radioiodinated, and labeled Ig from the cell surface was isolated and studied. Subcellular fractionation of labeled cells confirmed that intracellular proteins from the cytoplasm are not iodinated by this method. Radioactive Ig was identified as monomeric (8S) IgM, and an average of 105 Ig molecules was found per cell. Ig molecules could be released from the plasma membrane by detergent lysis under nonreducing conditions indicating that attachment of Ig to the plasma membrane occurs via noncovalent interactions. The ratio of µ/L radioactivity in surface Ig was the same as that of total cellular Ig radioiodinated in solution suggesting that a large portion of the Fc fragment is not buried within the membrane. In contrast to the results obtained with cell surface Ig, most intracellular Ig was found as "free" µ- and L chains regardless of whether lysates were labeled with 125I or cells were labeled with leucine-3H. The results indicate that only a small percentage of the total Ig of Daudi cells is associated with the cell surface and suggest that covalent assembly of Ig occurs at or near the time that the molecule becomes part of the plasma membrane. Similarities between cell surface Ig on normal splenic lymphocytes and Daudi cells suggest that the latter is a neoplasm of bone marrow-derived lymphocytes.


2004 ◽  
Vol 72 (12) ◽  
pp. 6826-6835 ◽  
Author(s):  
Ken Teter ◽  
Michael G. Jobling ◽  
Randall K. Holmes

ABSTRACT Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic A1 polypeptide of CT (CTA1) then crosses the ER membrane, enters the cytosol, ADP-ribosylates the stimulatory α subunit of the heterotrimeric G protein (Gsα) at the cytoplasmic face of the plasma membrane, and activates adenylate cyclase. The cytosolic pool of CTA1 may reach the plasma membrane and its Gsα target by traveling on anterograde-directed transport vesicles. We examined this possibility with the use of a plasmid-based transfection system that directed newly synthesized CTA1 to either the ER lumen or the cytosol of CHO cells. Such a system allowed us to bypass the CT retrograde trafficking itinerary from the cell surface to the ER. Previous work has shown that the ER-localized pool of CTA1 is rapidly exported from the ER to the cytosol. Expression of CTA1 in either the ER or the cytosol led to the activation of Gsα, and Gsα activation was not inhibited in transfected cells exposed to drugs that inhibit vesicular traffic. Thus, anterograde transport from the ER to the plasma membrane is not required for the cytotoxic action of CTA1.


Sign in / Sign up

Export Citation Format

Share Document