scholarly journals Clinical utility and cost-effectiveness of bacterial 16S rRNA and targeted PCR based diagnostic testing in a UK microbiology laboratory network

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dinesh Aggarwal ◽  
Tanmay Kanitkar ◽  
Michael Narouz ◽  
Berge S. Azadian ◽  
Luke S. P. Moore ◽  
...  
2000 ◽  
Vol 95 (7) ◽  
pp. 1691-1698 ◽  
Author(s):  
Nimish Vakil ◽  
David Rhew ◽  
Andrew Soll ◽  
Joshua J. Ofman

2017 ◽  
Vol 102 (6) ◽  
pp. 314-318 ◽  
Author(s):  
Kim Simpson ◽  
Malcolm Brodlie

Measuring nasal nitric oxide (nNO) is increasingly used as part of testing for primary ciliary dyskinesia (PCD). The diagnosis of PCD is often delayed until after bronchiectasis is established and auditory damage has occurred. It is important that all paediatricians are aware of clinical features that are suggestive of PCD that should prompt diagnostic testing. nNO levels are recognised to be low in people with PCD and results generated by static chemiluminescence analysers using velum closure technique in older children have good sensitivity and specificity. However, to conclusively rule PCD in or out, further tests of ciliary function are required and assessment of cilia ultrastructure, immunohistochemistry studies and genotyping may also be indicated. These tests are more complex, invasive and expensive than nNO. nNO is less well studied in younger children where tidal breathing measurements are required. Portable nitric oxide analysers are also increasingly used in practice. This paper discusses when to consider PCD as a possible diagnosis in a child along with the indications, physiological and technical background and clinical utility of nNO as a test for PCD in children.


2012 ◽  
Vol 125 ◽  
pp. S150 ◽  
Author(s):  
A. Rodolakis ◽  
N. Thomakos ◽  
G. Vlachos ◽  
D. Haidopoulos ◽  
K. Sarris ◽  
...  

2020 ◽  
Vol 33 (4) ◽  
Author(s):  
Deirdre L. Church ◽  
Lorenzo Cerutti ◽  
Antoine Gürtler ◽  
Thomas Griener ◽  
Adrian Zelazny ◽  
...  

SUMMARY This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Thomas J. S. Durant ◽  
Jacob Merwede ◽  
Jesse Reynolds ◽  
David R. Peaper

ABSTRACT The use of some nucleic acid amplification tests (NAATs) for the diagnosis of group A Streptococcus (GAS) pharyngitis allows laboratories to adopt single-tiered testing without reflex culture. However, centralization may delay the delivery of actionable information to the bedside, particularly in the outpatient setting. We describe two novel workflows at our institution and their effect on in-lab turnaround time (TAT) at a tertiary care microbiology lab. Laboratory records were extracted, and relevant data were analyzed after the implementation of qualitative in vitro diagnostic testing for GAS with the Xpert Xpress Strep A assay, performed using the GeneXpert Infinity-48s. Workflow optimization steps studied included: (i) direct specimen submission to the microbiology laboratory via the pneumatic tube system and (ii) autoverification of GAS NAAT results in the laboratory information system. Between April 2018 and October 2018, 2,595 unique specimens were tested for GAS by PCR. Of these, 2,523 were included in the final analysis. Linear regression established that the total in-lab TAT was significantly reduced by direct specimen submission to the microbiology laboratory, autoverification, and processing during the night shift. We describe two workflow optimization methods that reduced the in-lab TAT for GAS NAAT. Although microbiology labs historically use manual processes, the advent of total laboratory automation and the adoption of on-demand NAATs will allow for more streamlined processing of microbiology specimens. It may be beneficial to consider instrument interfacing and specimen processing optimization during the early phases of implementation planning for NAATs in the microbiology laboratory.


Sign in / Sign up

Export Citation Format

Share Document