scholarly journals Odor Mixtures in Identification Testing Using Sniffin’ Sticks: The SSomix Test

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Tianxiang Liu ◽  
Gerold Besser ◽  
Miriam Lang ◽  
Gunjan Sharma ◽  
Eleonore Pablik ◽  
...  
Keyword(s):  
2008 ◽  
Vol 27 (10) ◽  
pp. 2676-2685 ◽  
Author(s):  
Kimberly J. Grossman ◽  
Atul K. Mallik ◽  
Jessica Ross ◽  
Leslie M. Kay ◽  
Naoum P. Issa

2003 ◽  
Vol 12 (01) ◽  
pp. 1-16 ◽  
Author(s):  
RICARDO GUTIERREZ-OSUNA ◽  
NILESH U. POWAR

Inspired by the process of olfactory adaptation in biological olfactory systems, this article presents two algorithms that allow a chemical sensor array to reduce its sensitivity to odors previously detected in the environment. The first algorithm is based on a committee machine of linear discriminant functions that operate on multiple subsets of the overall sensory input. Adaptation occurs by depressing the voting strength of discriminant functions that display higher sensitivity to previously detected odors. The second algorithm is based on a topology-preserving linear projection derived from Fisher's class separability criteria. In this case, the process of adaptation is implemented through a reformulation of the between-to-within-class scatter eigenvalue problem. The proposed algorithms are validated on two datasets of binary and ternary mixtures of organic solvents using an array of temperature-modulated metal-oxide chemoresistors.


2019 ◽  
Author(s):  
Shigenori Inagaki ◽  
Ryo Iwata ◽  
Masakazu Iwamoto ◽  
Takeshi Imai

SUMMARYSensory information is selectively or non-selectively inhibited and enhanced in the brain, but it remains unclear whether this occurs commonly at the peripheral stage. Here, we performed two-photon calcium imaging of mouse olfactory sensory neurons (OSNs) in vivo and found that odors produce not only excitatory but also inhibitory responses at their axon terminals. The inhibitory responses remained in mutant mice, in which all possible sources of presynaptic lateral inhibition were eliminated. Direct imaging of the olfactory epithelium revealed widespread inhibitory responses at OSN somata. The inhibition was in part due to inverse agonism toward the odorant receptor. We also found that responses to odor mixtures are often suppressed or enhanced in OSNs: Antagonism was dominant at higher odor concentrations, whereas synergy was more prominent at lower odor concentrations. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy, at the early peripheral stage, contributing to robust odor representations.


2014 ◽  
Vol 5 ◽  
Author(s):  
Thierry Thomas-Danguin ◽  
Charlotte Sinding ◽  
Sébastien Romagny ◽  
Fouzia El Mountassir ◽  
Boriana Atanasova ◽  
...  
Keyword(s):  

2020 ◽  
Vol 117 (22) ◽  
pp. 12402-12410 ◽  
Author(s):  
Yang Shen ◽  
Sanjoy Dasgupta ◽  
Saket Navlakha

Habituation is a form of simple memory that suppresses neural activity in response to repeated, neutral stimuli. This process is critical in helping organisms guide attention toward the most salient and novel features in the environment. Here, we follow known circuit mechanisms in the fruit fly olfactory system to derive a simple algorithm for habituation. We show, both empirically and analytically, that this algorithm is able to filter out redundant information, enhance discrimination between odors that share a similar background, and improve detection of novel components in odor mixtures. Overall, we propose an algorithmic perspective on the biological mechanism of habituation and use this perspective to understand how sensory physiology can affect odor perception. Our framework may also help toward understanding the effects of habituation in other more sophisticated neural systems.


Science ◽  
2020 ◽  
Vol 368 (6487) ◽  
pp. eaaz5390 ◽  
Author(s):  
Lu Xu ◽  
Wenze Li ◽  
Venkatakaushik Voleti ◽  
Dong-Jing Zou ◽  
Elizabeth M. C. Hillman ◽  
...  

Olfactory responses to single odors have been well characterized but in reality we are continually presented with complex mixtures of odors. We performed high-throughput analysis of single-cell responses to odor blends using Swept Confocally Aligned Planar Excitation (SCAPE) microscopy of intact mouse olfactory epithelium, imaging ~10,000 olfactory sensory neurons in parallel. In large numbers of responding cells, mixtures of odors did not elicit a simple sum of the responses to individual components of the blend. Instead, many neurons exhibited either antagonism or enhancement of their response in the presence of another odor. All eight odors tested acted as both agonists and antagonists at different receptors. We propose that this peripheral modulation of responses increases the capacity of the olfactory system to distinguish complex odor mixtures.


Author(s):  
Nalin Katta ◽  
Debajit Saha ◽  
Kevin Leong ◽  
Junnan Wu ◽  
Naveen Gandra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document