scholarly journals Visualising spatio-temporal distributions of assimilated carbon translocation and release in root systems of leguminous plants

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yong-Gen Yin ◽  
Nobuo Suzui ◽  
Keisuke Kurita ◽  
Yuta Miyoshi ◽  
Yusuke Unno ◽  
...  
2021 ◽  
Author(s):  
Magdalena Landl ◽  
Adrian Haupenthal ◽  
Daniel Leitner ◽  
Eva Kroener ◽  
Doris Vetterlein ◽  
...  

1AbstractIn this study, we developed a novel model approach to compute the spatio-temporal distribution patterns of rhizodeposits around growing root systems in three dimensions. This model approach allows us for the first time to study the evolution of rhizodeposition patterns around complex three-dimensional root systems. Root systems were generated using the root architecture model CPlantBox. The concentration of rhizodeposits at a given location in the soil domain was computed analytically. To simulate the spread of rhizodeposits in the soil, we considered rhizodeposit release from the roots, rhizodeposit diffusion into the soil, rhizodeposit sorption to soil particles, and rhizodeposit degradation by microorganisms. To demonstrate the capabilities of our new model approach, we performed simulations for the two example rhizodeposits mucilage and cit-rate and the example root system Vicia faba. The rhizodeposition model was parameterized using values from the literature. Our simulations showed that the rhizosphere soil volume with rhizodeposit concentrations above a defined threshold value (i.e., the rhizodeposit hotspot volume), exhibited a maximum at intermediate root growth rates. Root branching allowed the rhizospheres of individual roots to overlap, resulting in a greater volume of rhizodeposit hotspots. This was particularly important in the case of citrate, where overlap of rhizodeposition zones accounted for more than half of the total rhizodeposit hotspot volumes. Coupling a root architecture model with a rhizodeposition model allowed us to get a better understanding of the influence of root architecture as well as rhizodeposit properties on the evolution of the spatio-temporal distribution patterns of rhizodeposits around growing root systems.


1941 ◽  
Vol 19c (6) ◽  
pp. 199-210 ◽  
Author(s):  
P. M. West ◽  
A. A. Hildebrand

Soybean and red clover, grown as cover crops and incorporated into strawberry root rot soil, showed a marked difference in ability to control the disease on variety Premier. Soybean caused a striking reduction in the incidence of root rot and a drastic shift in the bacterial equilibrium of the soil. Red clover had little effect on the severity of the disease or the general microflora of the soil.A study of "rhizosphere effects" reveals that the characteristic differences between the resultant bacterial equilibrium of the soils in which the two leguminous plants were grown, could not be attributed to influences exerted by the latter in the living state. However, the bacterial types favoured during decomposition in experimental cultures of tissues of red clover and of soybean, each inoculated with root rot soil, were identical with those isolated from root rot soil with which red clover and soybean, respectively, had been incorporated. In contrast to the putrefactive decomposition of red clover, soybeans apparently underwent a carbohydrate breakdown that could be reproduced essentially in culture by the substitution of glucose for soybean tissues. Beneficial changes in the bacteriology of actual root rot soils could be induced by the decomposition of pure carbohydrate in place of soybean. The favourable alteration in the bacterial equilibrium was accompanied by a corresponding modification of the fungous flora such that potentially pathogenic forms were replaced by presumably innocuous ones. These carbohydrate treated soils were capable of producing strawberry plants with well developed healthy root systems. The ability of soybean to control strawberry root rot therefore seems to depend primarily on a carbohydrate type of breakdown in diseased soil, causing a highly favourable shift in the microbiological equilibrium. The decomposition of red clover, on the other hand, did not under the same conditions induce these salutary effects.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hannah M. Schneider ◽  
Johannes A. Postma ◽  
Johannes Kochs ◽  
Daniel Pflugfelder ◽  
Jonathan P. Lynch ◽  
...  

Author(s):  
Magdalena Landl ◽  
Adrian Haupenthal ◽  
Daniel Leitner ◽  
Eva Kroener ◽  
Doris Vetterlein ◽  
...  

Abstract In this study, we developed a novel model approach to compute the spatio-temporal distribution patterns of rhizodeposits around growing root systems in three dimensions. This model approach allows us to study the evolution of rhizodeposition patterns around complex three-dimensional root systems. Root systems were generated using the root architecture model CPlantBox. The concentration of rhizodeposits at a given location in the soil domain was computed analytically. To simulate the spread of rhizodeposits in the soil, we considered rhizodeposit release from the roots, rhizodeposit diffusion into the soil, rhizodeposit sorption to soil particles, and rhizodeposit degradation by microorganisms. To demonstrate the capabilities of our new model approach, we performed simulations for the two example rhizodeposits mucilage and citrate and the example root system Vicia faba. The rhizodeposition model was parameterized using values from the literature. Our simulations showed that the rhizosphere soil volume with rhizodeposit concentrations above a defined threshold value (i.e., the rhizodeposit hotspot volume), exhibited a maximum at intermediate root growth rates. Root branching allowed the rhizospheres of individual roots to overlap, resulting in a greater volume of rhizodeposit hotspots. This was particularly important in the case of citrate, where overlap of rhizodeposition zones accounted for more than half of the total rhizodeposit hotspot volumes. Coupling a root architecture model with a rhizodeposition model allowed us to get a better understanding of the influence of root architecture as well as rhizodeposit properties on the evolution of the spatio-temporal distribution patterns of rhizodeposits around growing root systems.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document