scholarly journals Multiscale electronic and thermomechanical dynamics in ultrafast nanoscale laser structuring of bulk fused silica

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Madhura Somayaji ◽  
Manoj K. Bhuyan ◽  
Florent Bourquard ◽  
Praveen K. Velpula ◽  
Ciro D’Amico ◽  
...  

Abstract We describe the evolution of ultrafast-laser-excited bulk fused silica over the entire relaxation range in one-dimensional geometries fixed by non-diffractive beams. Irradiation drives local embedded modifications of the refractive index in the form of index increase in densified glass or in the form of nanoscale voids. A dual spectroscopic and imaging investigation procedure is proposed, coupling electronic excitation and thermodynamic relaxation. Specific sub-ps and ns plasma decay times are respectively correlated to these index-related electronic and thermomechanical transformations. For the void formation stages, based on time-resolved spectral imaging, we first observe a dense transient plasma phase that departs from the case of a rarefied gas, and we indicate achievable temperatures in the excited matter in the 4,000–5,500 K range, extending for tens of ns. High-resolution speckle-free microscopy is then used to image optical signatures associated to structural transformations until the evolution stops. Multiscale imaging indicates characteristic timescales for plasma decay, heat diffusion, and void cavitation, pointing out key mechanisms of material transformation on the nanoscale in a range of processing conditions. If glass densification is driven by sub-ps electronic decay, for nanoscale structuring we advocate the passage through a long-living dense ionized phase that decomposes on tens of ns, triggering cavitation.

2015 ◽  
Vol 40 (24) ◽  
pp. 5726 ◽  
Author(s):  
Zhaohui Wang ◽  
Bin Zeng ◽  
Guihua Li ◽  
Hongqiang Xie ◽  
Wei Chu ◽  
...  

2009 ◽  
Vol 62 (7) ◽  
pp. 692 ◽  
Author(s):  
Toby D. M. Bell ◽  
Sheshanath V. Bhosale ◽  
Kenneth P. Ghiggino ◽  
Steven J. Langford ◽  
Clint P. Woodward

The synthesis of a porphyrin star-pentamer bearing a free-base porphyrin core and four zinc(ii) metalloporphyrins, which are tethered by a conformationally flexible linker about the central porphyrin’s antipody, is described. The synthetic strategy is highlighted by the use of olefin cross metathesis to link the five chromophores together in a directed fashion in high yield. Photoexcitation into the Soret absorption band of the zinc porphyrin chromophores at 425 nm leads to a substantial enhancement of central free-base porphyrin fluorescence, indicating energy transfer from the photoexcited zinc porphyrin (outer periphery) to central free-base porphyrin. Time-resolved fluorescence decay profiles required three exponential decay components for satisfactory fitting. These are attributed to emission from the central free-base porphyrin and to two different rates of energy transfer from the zinc porphyrins to the free-base porphyrin. The faster of these decay components equates to an energy-transfer rate constant of 3.7 × 109 s–1 and an efficiency of 83%, whereas the other is essentially unquenched with respect to reported values for zinc porphyrin fluorescence decay times. The relative contribution of these two components to the initial fluorescence decay is ~3:2, similar to the 5:4 ratio of cis and trans geometric isomers present in the pentamer.


2019 ◽  
Vol 27 (5) ◽  
pp. 7699 ◽  
Author(s):  
Balys Momgaudis ◽  
Viaceslav Kudriasov ◽  
Mikas Vengris ◽  
Andrius Melninkaitis

2019 ◽  
Vol 46 (8) ◽  
pp. 0803001
Author(s):  
曹珍 Zhen Cao ◽  
贺洪波 Hongbo He ◽  
胡国行 Guohang Hu ◽  
赵元安 Yuanan Zhao ◽  
邵建达 Jianda Shao

2019 ◽  
Vol 37 (4) ◽  
pp. 400-407 ◽  
Author(s):  
A. Bartnik ◽  
H. Fiedorowicz ◽  
P. Wachulak ◽  
T. Fok

AbstractInteraction of extreme ultraviolet (EUV) pulses of high intensity with gases results in the creation of non-thermalized plasmas. Energies of the driving photons and photoelectrons are sufficient for creation of excited states, followed by emission of the EUV photons. In most cases, decay times of these states are short comparing to the driving EUV pulse. It means that just after stopping of the driving pulse, the EUV emission corresponding to the excited states should also stop. From our earlier measurements in the optical range, however, it can be concluded that lifetimes of such plasmas exceed a time duration of the driving pulse even two orders of magnitude. Hence, it can be expected that the time duration of the EUV emission can be also significantly longer than the irradiation time. In this work, EUV-induced, low-temperature helium (He), krypton, and xenon plasmas were investigated. EUV emission from these plasmas was studied, using a specially prepared detection system, allowing for time-resolved measurements, in selected spectral ranges. The detection system was based on a paraboloidal collector and a semiconductor photodiode, sensitive for the EUV photons. For spectral selection, the corresponding filters or multilayer mirrors were employed. In most cases, the time duration of the EUV emission was significantly longer than the driving EUV pulse. In case of He plasmas, the emission corresponding to excited atoms was detected even hundreds of nanoseconds after the irradiation. It was also shown that the corresponding time profiles depended on densities of gases to be ionized.


Author(s):  
Cyril MAUCLAIR ◽  
Konstantin MISHCHIK ◽  
Alexandre MERMILLOD-BLONDIN ◽  
Jörn BONSE ◽  
Arkadi ROSENFELD ◽  
...  

1983 ◽  
Vol 13 ◽  
Author(s):  
P. H. Bucksbaum ◽  
J. Bokor

ABSTRACTFast regrowth of amorphous silicon from liquid silicon films has been directly observed in a time resolved picosecond laser melting experiment. Liquid films up to 100 nm thick were formed on crystalline substrates with 15 picosecond 248 nm pulses from a KrF* excimer laser. The film thickness as a function of time was probed directly by observing attenuation of 1.64 pm 15 psec light pulses transmitted through the melt. Melting and regrowth velocities were compared to a heat diffusion model, and evidence for melt undercooling was observed. The resolidified silicon was amorphous at all values of incident laser intensity.


1995 ◽  
Vol 379 ◽  
Author(s):  
K. Eberl ◽  
A. Kurtenbach ◽  
K. HÄusler ◽  
F. Noll ◽  
W.W. RÜhle

ABSTRACTNanoscale InP islands are formed during InP/In0 48Ga0.52P heteroepitaxy due to the lattice mismatch of about 3.7%. The samples are prepared by solid source molecular beam epitaxy on (001) GaAs substrate. Atomic force microscopy measurements show that the size of the islands is typically 15 to 50 nm in diameter and about 5 to 10 nm high depending on the nominally deposited InP layer thickness, which is between 1 and 7.5 monolayers. Transmission electron micrographs show the coherent incorporation into the In0.48Ga0.52P matrix for InP islands with 2.5 monolayers. Resonantly excited time-resolved photoluminescence (PL) measurements of the self assembling InP dots are performed for optical characterisation. The decay times are typically 400 ps. The dependence on excitation power and temperature indicates the quantum dot nature of the InP islands. Finally a pronounced alignment of the InP islands is obtained on strained In0.61Ga0.39P buffer layers.


2000 ◽  
Vol 54 (4) ◽  
pp. 548-559 ◽  
Author(s):  
Gregor Liebsch ◽  
Ingo Klimant ◽  
Bernhard Frank ◽  
Gerhard Holst ◽  
Otto S. Wolfbeis

We present a modular system for time-resolved two-dimensional luminescence lifetime imaging of planar optical chemical sensors. It is based on a fast, gateable charge-coupled device (CCD) camera without image intensifier and a pulsable light-emitting diode (LED) array as a light source. Software was developed for data acquisition with a maximum of parameter variability and for background suppression. This approach allows the operation of the system even under daylight. Optical sensors showing analyte-specific changes of their luminescence decay time were tested and used for sensing pO2, pCO2, pH, and temperature. The luminophores employed are either platinum(II)-porphyrins or ruthenium(II)-polypyridyl complexes, contained in polymer films, and can be efficiently excited by blue LEDs. The decay times of the sensor films vary from 70 μs for the Pt(II)-porphyrins to several 100 ns for the Ru(II) complexes. In a typical application, 7 mm-diameter spots of the respective optical sensor films were placed at the bottom of the wells of microtiterplates. Thus, every well represents a separate calibration chamber with an integrated sensor element. Both luminescence intensity-based and time-resolved images of the sensor spots were evaluated and compared. The combination of optical sensor technology with time-resolved imaging allows a determination of the distribution of chemical or physical parameters in heterogeneous systems and is therefore a powerful tool for screening and mapping applications.


Sign in / Sign up

Export Citation Format

Share Document