scholarly journals Author Correction: Label-Free Imaging of Tissue Architecture during Axolotl Peripheral Nerve Regeneration in Comparison to Functional Recovery

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ortrud Uckermann ◽  
Joana Hirsch ◽  
Roberta Galli ◽  
Jonas Bendig ◽  
Robert Later ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2015 ◽  
Vol 10 (1) ◽  
pp. 84 ◽  
Author(s):  
Yu-hui Kou ◽  
Bao-guo Jiang ◽  
Bo Chen ◽  
Su-ping Niu ◽  
Zhi-yong Wang ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

In the U.S., peripheral nerve injuries (PNI) harm about 22 million people. The most frequent causes and types of PNI vary by demography (civilians vs. military, geography/country). After crush injuries, functional recovery is better than after transections, and better after distal injuries than proximal ones. Despite advancements in microsurgical treatments, severe PNIs remain connected to slow recovery. This review highlights new peripheral nerve regeneration approaches (e.g. electrical stimulation, cell therapies), which may lead to a shift in PNI therapeutic paradigms in conjunction with neurotrophic agents and breakthroughs in bioscaffold engineering. It also examines how synthetic neural scaffolds can aid with peripheral nerve recovery, as well as the next generation of biomimetic neural scaffolding that can aid in tissue regeneration. Neurotrophic factor-enriched neural scaffolds, stem cell treatments, and electrical stimulation have shown promising preclinical and even clinical results. The future of peripheral nerve regeneration is bright, since a combination of the aforementioned treatments may have a synergistic impact on nerve regeneration and functional recovery in patients with PNI. Stem cell technology is improving and evolving, and it has been explored through a number of methods in preclinical research for peripheral nerve regeneration. Electrical stimulation is another interesting potential treatment for PNI that may be used to stimulate axon regeneration.


Author(s):  
Shirley Masand ◽  
Jian Chen ◽  
Melitta Schachner ◽  
David I. Shreiber

Despite this innate regenerative potential of the peripheral nervous system, functional recovery often remains incomplete, especially as the severity of injury increases. This has been attributed to a number of sources including the ingrowth of fibrous scar tissue, lack of mechanical support for emerging neurites, and the malrouted reinnervation of neurites towards inappropriate targets. While research in the field is broad, it is generally accepted that an optimal nerve guidance conduit to encourage regeneration should include both biological and mechanical support for emerging neurites and glia.


2016 ◽  
Vol 27 (7) ◽  
pp. 761-768 ◽  
Author(s):  
Qi Quan ◽  
Biao Chang ◽  
Hao Ye Meng ◽  
Ruo Xi Liu ◽  
Yu Wang ◽  
...  

AbstractA number of limitations associated with the use of hollow nerve guidance conduits (NGCs) require further discussion. Most importantly, the functional recovery outcomes after the placement of hollow NGCs are poor even after the successful bridging of peripheral nerve injuries. However, nerve regeneration scaffolds built using electric spinning have several advantages that may improve functional recovery. Thus, the present study summarizes recent developments in this area, including the key cells that are combined with the scaffold and associated with nerve regeneration, the structure and configuration of the electrospinning design (which determines the performance of the electrospinning scaffold), the materials the electrospinning fibers are composed of, and the methods used to control the morphology of a single fiber. Additionally, this study also discusses the processes underlying peripheral nerve regeneration. The primary goals of the present review were to evaluate and consolidate the findings of studies that used scaffolding biomaterials built by electrospinning used for peripheral nerve regeneration support. It is amazing that the field of peripheral nerve regeneration continues to consistently produce such a wide variety of innovative techniques and novel types of equipment, because the introduction of every new process creates an opportunity for advances in materials for nerve repair.


Sign in / Sign up

Export Citation Format

Share Document