scholarly journals The effects of background music on neural responses during reading comprehension

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Meng Du ◽  
Jun Jiang ◽  
Zhemin Li ◽  
Dongrui Man ◽  
Cunmei Jiang

Abstract The effects of background speech or noise on visually based cognitive tasks has been widely investigated; however, little is known about how the brain works during such cognitive tasks when music, having a powerful function of evoking emotions, is used as the background sound. The present study used event-related potentials to examine the effects of background music on neural responses during reading comprehension and their modulation by musical arousal. Thirty-nine postgraduates judged the correctness of sentences about world knowledge without or with background music (high-arousal music and low-arousal music). The participants’ arousal levels were reported during the experiment. The results showed that the N400 effect, elicited by world knowledge violations versus correct controls, was significantly smaller for silence than those for high- and low-arousal music backgrounds, with no significant difference between the two musical backgrounds. This outcome might have occurred because the arousal levels of the participants were not affected by the high- and low-arousal music throughout the experiment. These findings suggest that background music affects neural responses during reading comprehension by increasing the difficulty of semantic integration, and thus extend the irrelevant sound effect to suggest that the neural processing of visually based cognitive tasks can also be affected by music.

Author(s):  
Dimitrios J Palidis ◽  
Heather R. McGregor ◽  
Andrew Vo ◽  
Penny A. MacDonald ◽  
Paul L Gribble

Dopamine signaling is thought to mediate reward-based learning. We tested for a role of dopamine in motor adaptation by administering the dopamine precursor levodopa to healthy participants in two experiments involving reaching movements. Levodopa has been shown to impair reward-based learning in cognitive tasks. Thus, we hypothesized that levodopa would selectively impair aspects of motor adaptation that depend on reinforcement of rewarding actions.In the first experiment, participants performed two separate tasks in which adaptation was driven either by visual error-based feedback of the hand position or binary reward feedback. We used EEG to measure event-related potentials evoked by task feedback. We hypothesized that levodopa would specifically diminish adaptation and the neural responses to feedback in the reward learning task. However, levodopa did not affect motor adaptation in either task nor did it diminish event-related potentials elicited by reward outcomes. In the second experiment, participants learned to compensate for mechanical force field perturbations applied to the hand during reaching. Previous exposure to a particular force field can result in savings during subsequent adaptation to the same force field or interference during adaptation to an opposite force field. We hypothesized that levodopa would diminish savings and anterograde interference, as previous work suggests that these phenomena result from a reinforcement learning process. However, we found no reliable effects of levodopa.These results suggest that reward-based motor adaptation, savings, and interference may not depend on the same dopaminergic mechanisms that have been shown to be disrupted by levodopa during various cognitive tasks.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Jona Sassenhagen ◽  
Ryan Blything ◽  
Elena V. M. Lieven ◽  
Ben Ambridge

How are verb-argument structure preferences acquired? Children typically receive very little negative evidence, raising the question of how they come to understand the restrictions on grammatical constructions. Statistical learning theories propose stochastic patterns in the input contain sufficient clues. For example, if a verb is very common, but never observed in transitive constructions, this would indicate that transitive usage of that verb is illegal. Ambridge et al. (2008) have shown that in offline grammaticality judgements of intransitive verbs used in transitive constructions, low-frequency verbs elicit higher acceptability ratings than high-frequency verbs, as predicted if relative frequency is a cue during statistical learning. Here, we investigate if the same pattern also emerges in on-line processing of English sentences. EEG was recorded while healthy adults listened to sentences featuring transitive uses of semantically matched verb pairs of differing frequencies. We replicate the finding of higher acceptabilities of transitive uses of low- vs. high-frequency intransitive verbs. Event-Related Potentials indicate a similar result: early electrophysiological signals distinguish between misuse of high- vs low-frequency verbs. This indicates online processing shows a similar sensitivity to frequency as off-line judgements, consistent with a parser that reflects an original acquisition of grammatical constructions via statistical cues. However, the nature of the observed neural responses was not of the expected, or an easily interpretable, form, motivating further work into neural correlates of online processing of syntactic constructions.


2015 ◽  
Vol 27 (5) ◽  
pp. 1017-1028 ◽  
Author(s):  
Paul Metzner ◽  
Titus von der Malsburg ◽  
Shravan Vasishth ◽  
Frank Rösler

Recent research has shown that brain potentials time-locked to fixations in natural reading can be similar to brain potentials recorded during rapid serial visual presentation (RSVP). We attempted two replications of Hagoort, Hald, Bastiaansen, and Petersson [Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441, 2004] to determine whether this correspondence also holds for oscillatory brain responses. Hagoort et al. reported an N400 effect and synchronization in the theta and gamma range following world knowledge violations. Our first experiment (n = 32) used RSVP and replicated both the N400 effect in the ERPs and the power increase in the theta range in the time–frequency domain. In the second experiment (n = 49), participants read the same materials freely while their eye movements and their EEG were monitored. First fixation durations, gaze durations, and regression rates were increased, and the ERP showed an N400 effect. An analysis of time–frequency representations showed synchronization in the delta range (1–3 Hz) and desynchronization in the upper alpha range (11–13 Hz) but no theta or gamma effects. The results suggest that oscillatory EEG changes elicited by world knowledge violations are different in natural reading and RSVP. This may reflect differences in how representations are constructed and retrieved from memory in the two presentation modes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuwei Yang ◽  
Shunshun Du ◽  
Hui He ◽  
Chengming Wang ◽  
Xueke Shan ◽  
...  

Although risk decision-making plays an important role in leadership practice, the distinction in behavior between humans with differing levels of leadership, as well as the underlying neurocognitive mechanisms involved, remain unclear. In this study, the Ultimatum Game (UG) was utilized in concert with electroencephalograms (EEG) to investigate the temporal course of cognitive and emotional processes involved in economic decision-making between high and low leadership level college students. Behavioral results from this study found that the acceptance rates in an economic transaction, when the partner was a computer under unfair/sub unfair condition, were significantly higher than in transactions with real human partners for the low leadership group, while there was no significant difference in acceptance rates for the high leadership group. Results from Event-Related Potentials (ERP) analysis further indicated that there was a larger P3 amplitude in the low leadership group than in the high leadership group. We concluded that the difference between high and low leadership groups was at least partly due to their different emotional management abilities.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e79734 ◽  
Author(s):  
Xiaohong Yang ◽  
Xuhai Chen ◽  
Shuang Chen ◽  
Xiaoying Xu ◽  
Yufang Yang

2019 ◽  
pp. 1-9 ◽  
Author(s):  
Victor J. Pokorny ◽  
Timothy J. Lano ◽  
Michael-Paul Schallmo ◽  
Cheryl A. Olman ◽  
Scott R. Sponheim

Abstract Background Accurate perception of visual contours is essential for seeing and differentiating objects in the environment. Both the ability to detect visual contours and the influence of perceptual context created by surrounding stimuli are diminished in people with schizophrenia (SCZ). The central aim of the present study was to better understand the biological underpinnings of impaired contour integration and weakened effects of perceptual context. Additionally, we sought to determine whether visual perceptual abnormalities reflect genetic factors in SCZ and are present in other severe mental disorders. Methods We examined behavioral data and event-related potentials (ERPs) collected during the perception of simple linear contours embedded in similar background stimuli in 27 patients with SCZ, 23 patients with bipolar disorder (BP), 23 first-degree relatives of SCZ, and 37 controls. Results SCZ exhibited impaired visual contour detection while BP exhibited intermediate performance. The orientation of neighboring stimuli (i.e. flankers) relative to the contour modulated perception across all groups, but SCZ exhibited weakened suppression by the perceptual context created by flankers. Late visual (occipital P2) and cognitive (centroparietal P3) neural responses showed group differences and flanker orientation effects, unlike earlier ERPs (occipital P1 and N1). Moreover, behavioral effects of flanker context on contour perception were correlated with modulation in P2 & P3 amplitudes. Conclusion In addition to replicating and extending findings of abnormal contour integration and visual context modulation in SCZ, we provide novel evidence that the abnormal use of perceptual context is associated with higher-order sensory and cognitive processes.


2020 ◽  
Vol 123 (3) ◽  
pp. 876-884 ◽  
Author(s):  
Gülsüm Akdeniz ◽  
Sadiye Gumusyayla ◽  
Gonul Vural ◽  
Hesna Bektas ◽  
Orhan Deniz

Migraine is a multifactorial brain disorder characterized by recurrent disabling headache attacks. One of the possible mechanisms in the pathogenesis of migraine may be a decrease in inhibitory cortical stimuli in the primary visual cortex attributable to cortical hyperexcitability. The aim of this study was to investigate the neural correlates underlying face and face pareidolia processing in terms of the event-related potential (ERP) components, N170, vertex positive potential (VPP), and N250, in patients with migraine. In total, 40 patients with migraine without aura, 23 patients with migraine and aura, and 30 healthy controls were enrolled. We recorded ERPs during the presentation of face and face pareidolia images. N170, VPP, and N250 mean amplitudes and latencies were examined. N170 was significantly greater in patients with migraine with aura than in healthy controls. VPP amplitude was significantly greater in patients with migraine without aura than in healthy controls. The face stimuli evoked significantly earlier VPP responses to faces (168.7 ms, SE = 1.46) than pareidolias (173.4 ms, SE = 1.41) in patients with migraine with aura. We did not find a significant difference between N250 amplitude for face and face pareidolia processing. A significant difference was observed between the groups for pareidolia in terms of N170 [F(2,86) = 14,75, P < 0.001] and VPP [F(2,86) = 16.43, P < 0.001] amplitudes. Early ERPs are a valuable tool to study the neural processing of face processing in patients with migraine to demonstrate visual cortical hyperexcitability. NEW & NOTEWORTHY Event-related potentials (ERPs) are important for understanding face and face pareidolia processing in patients with migraine. N170, vertex positive potential (VPP), and N250 ERPs were investigated. N170 was revealed as a potential component of cortical excitability for face and face pareidolia processing in patients with migraine.


2020 ◽  
Vol 8 (5) ◽  
pp. 872-889 ◽  
Author(s):  
Paige Ethridge ◽  
Nida Ali ◽  
Sarah E. Racine ◽  
Jens C. Pruessner ◽  
Anna Weinberg

Both abnormal stress and reward responsivity are consistently linked to multiple forms of psychopathology; however, the nature of the associations between stress and reward sensitivity remains poorly understood. In the present study, we examined associations between the hypothalamic-pituitary-adrenal-axis stress response and event-related potentials sensitive to the receipt of reward-related feedback in a pre–post experimental paradigm. Neural responses were recorded while male participants completed a simple monetary-reward guessing task before and after the Montreal Imaging Stress Task. Results demonstrated that acute psychosocial stress significantly reduced the magnitude of neural responses to feedback in the reward-sensitive delta-frequency band but not the loss-sensitive theta-frequency band. In addition, a larger delta-frequency response to rewards at baseline predicted reduced overall cortisol response in the stress condition. These findings suggest, therefore, that neural reward circuitry may be associated with both risk for and resilience to stress-related psychopathology.


2001 ◽  
Vol 4 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Ellen R. A. de Bruijn ◽  
Ton Dijkstra ◽  
Dorothee J. Chwilla ◽  
Herbert J. Schriefers

Dutch–English bilinguals performed a generalized lexical decision task on triplets of items, responding with “yes” if all three items were correct Dutch and/or English words, and with “no” if one or more of the items was not a word in either language. Sometimes the second item in a triplet was an interlingual homograph whose English meaning was semantically related to the third item of the triplet (e.g., HOUSE – ANGEL – HEAVEN, where ANGEL means “sting” in Dutch). In such cases, the first item was either an exclusively English (HOUSE) or an exclusively Dutch (ZAAK) word. Semantic priming effects were found in on-line response times. Event-related potentials that were recorded simultaneously showed N400 priming effects thought to reflect semantic integration processes. The response time and N400 priming effects were not affected by the language of the first item in the triplets, providing evidence in support of a strong bottom-up role with respect to bilingual word recognition. The results are interpreted in terms of the Bilingual Interactive Activation model, a language nonselective access model assuming bottom-up priority.


Sign in / Sign up

Export Citation Format

Share Document