scholarly journals Dynamics of grain boundary premelting

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Torabi Rad ◽  
G. Boussinot ◽  
M. Apel

AbstractThe mechanical strength of a polycrystalline material can be drastically weakened by a phenomenon known as grain boundary (GB) premelting that takes place, owing to the so-called disjoining potential, when the dry GB free energy $$\sigma _{gb}$$ σ gb exceeds twice the free energy of the solid–liquid interface $$\sigma _{sl}$$ σ sl . While previous studies of GB premelting are all limited to equilibrium conditions, we use a multi-phase field model to analyze premelting dynamics by simulating the steady-state growth of a liquid layer along a dry GB in an insulated channel and the evolution of a pre-melted polycrystalline microstructure. In both cases, our results reveal the crucial influence of the disjoining potential. A dry GB transforms into a pre-melted state for a grain-size-dependent temperature interval around $$T_m$$ T m , such that a critical overheating of the dry GBs over $$T_m$$ T m should be exceeded for the classical melting process to take place, the liquid layer to achieve a macroscopic width, and the disjoining potential to vanish. Our simulations suggest a steady-state velocity for this transformation proportional to $$\sigma _{gb} -2 \sigma _{sl}$$ σ gb - 2 σ sl . Concerning the poly-crystalline evolution, we find unusual grain morphologies and dynamics, deriving from the existence of a pre-melted polycrystalline equilibrium that we evidence. We are then able to identify the regime in which, due to the separation of the involved length scales, the dynamics corresponds to the same curvature-driven dynamics as for dry GBs, but with enhanced mobility.

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1292
Author(s):  
Kai Wang ◽  
Marc Weikamp ◽  
Mingxuan Lin ◽  
Carina Zimmermann ◽  
Ruth Schwaiger ◽  
...  

The formation of coherent precipitates is often accompanied by large elastic mismatch stresses, which suppress phase separation. We discuss the presence of interfaces as a mechanism for stress relaxation, which can lead to preferred zones of precipitation. In particular, we discuss the proximity of free surfaces and shear-coupled grain boundaries, for which we can obtain a substantial local energy reduction and predict the influence on the local precipitation thermodynamics. The latter case is accompanied by morphological changes of the grain boundary, which are less suitable for large-scale descriptions. For that purpose, we develop an effective description through an elastic softening inside the grain boundary and map the microscopic grain boundary relaxation to a mesoscopic elastic and phase field model, which also allows generalizing the description to multi-phase situations.


2001 ◽  
Vol 677 ◽  
Author(s):  
Ingo Steinbach ◽  
Markus Apel

ABSTRACTThe kinetics of grain growth in multicrystalline materials is determined by the interplay of curvature driven grain boundary motion and interfacial stress balance at the vertices of the grain boundaries. A comprehensive way to treat both effects in one model is given by the time dependent Ginzburg Landau model or phase field model. The paper presents the application of a multi phase field model, recently developed for solidification processes to grain growth of a multicrystalline structure. The specific feature of this multi phase field model is its ability to treat each grain boundary with its individual characteristics dependent on the type of the grain boundary, its orientation or the local pinning at precipitates. The pinning effect is simulated on the nanometer scale resolving the interaction of an individual precipitate with a curved grain boundary. From these simulations an effective pinning force is deduced and a model of driving force dependent grain boundary mobility is formulated accounting for the pinning effect on the mesoscopic scale of the grain growth simulation. 2-D grain growth simulations are presented.


2007 ◽  
Vol 129 ◽  
pp. 89-94 ◽  
Author(s):  
Nele Moelans ◽  
Bart Blanpain ◽  
Patrick Wollants

A phase field model for simulating grain growth and thermal grooving in thin films is presented. Orientation dependence of the surface free energy and misorientation dependence of the grain boundary free energy are included in the model. Moreover, the model can treat different mechanisms for groove formation, namely through volume diffusion, surface diffusion, evaporation-condensation, or a combination of these mechanisms. The evolution of a groove between two grains has been simulated for different surface and grain boundary energies and different groove formation mechanisms.


2017 ◽  
Vol 896 ◽  
pp. 120-127 ◽  
Author(s):  
Ting Ting Zhou ◽  
Chuan Zhen Huang ◽  
Ming Dong Yi

First-principle calculation is carried out on Al2O3(012)/SiC(310) interface model. It can be concluded from the electronic density and population analysis that Al-C and O-Si located at grain boundary primarily contribute to the interface bonding strength and creep resistance property. The electronic charges in grain boundaries and grains are compared with each other. And the valence electrons are found to be redistributed. The relationship of all kinds of chemical bonds in grains and grain boundary of the interface model is analyzed. Also the toughening mechanism of Al2O3/SiC multi-phase ceramic tool materials is explained in nano-scale.


Sign in / Sign up

Export Citation Format

Share Document