scholarly journals Effect of ball collision direction on a wet mechanochemical reaction

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Kozawa ◽  
Kayo Fukuyama ◽  
Kizuku Kushimoto ◽  
Shingo Ishihara ◽  
Junya Kano ◽  
...  

AbstractMechanochemical reactions can be induced in a solution by the collision of balls to produce high-temperature and high-pressure zones, with the reactions occurring through a dissolution–precipitation mechanism due to a change in solubility. However, only a fraction of the impact energy contributes to the mechanochemical reactions, while the rest is mainly consumed by the wear of balls and the heat generation. To clarify whether the normal or tangential component of collisions makes a larger contribution on the reaction, herein we studied the effect of collision direction on a wet mechanochemical reaction through combined analysis of the experimental reaction rates and simulated ball motion. Collisions of balls in the normal direction were found to contribute strongly to the wet mechanochemical reaction. These results could be used to improve the synthesis efficiency, predict the reaction, and lower the wear in the wet mechanochemical reactions.

Author(s):  
Alan Dobson ◽  
Dave Fogg

The impact of increasingly diverse functional requirements and extreme service conditions is having a significant effect upon the evolution of accepted umbilical technology. The current trend in deep water developments in the Gulf of Mexico, Brazil and West Africa coupled with a more diverse range of functional requirements such as medium voltage power supply to subsea equipment, high pressure and high temperature fluid injection, and integrated service functionality has lead to the development of a number of niche solutions being developed. These generally fall outside of the traditional umbilical design scope and as such are not effectively governed by existing industry design standards. The paper will discuss the current trends in umbilical technology; describing the limitations of existing accepted technologies with respect to functionality and extreme service requirements and highlight emerging technologies which are being developed by industry to address current limitations. The current legislative deficiencies related to emerging technologies will be discussed and will be focused upon medium voltage power umbilicals, high pressure high temperature umbilicals, and integrated service umbilicals.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Saeed Salehi ◽  
Raj Kiran

Wellbore stability has plagued oil industry for decades. Inclusion of the mud in drilling and the effect of mud cake build up incorporate very complex chemical, thermal, mechanical, and physical phenomena. It is very difficult to quantify all these phenomena in one model. The after effects of mud cake buildup, its permeability and variation in thickness with time alter the actual stress profile of the formation. To see the impact of the whole mechanism, a combination of laboratory studies and numerical modeling is needed. This paper includes the procedure and results on stress profiles in near wellbore region based on laboratory studies of mud cake buildup in high pressure and high temperature environment using permeability plug apparatus (PPA). The damaged formation zone is very susceptible to drilling fluid and results in alteration of existing pore pressure and fracture pressure. This paper presents integrated experimental and analytical solutions for wellbore strengthening due to mud cake plastering. Conducting experiments on rock core disks has provided more realistic results which can resemble to field conditions. The experimental work here provides an insight to effect of mud cake build up at high pressure and high temperature conditions using a heterogeneous filtration medium prepared from different sandstone cores. Results were used in the analytical model to see the effect of stresses in the formation. The primary objective is to investigate the wellbore hoop stress changes due to formation of filter cake by mud plastering using the analytical models built upon the laboratory results. The models developed in this work provide insights to quantify on wellbore plastering effects by mud cake build up.


2011 ◽  
Vol 183-185 ◽  
pp. 1847-1851
Author(s):  
Sheng Han Zhang ◽  
Jia Lian ◽  
Yu Tan

The semiconductor properties of passive film formed on 304L stainless steel (SS), 316L SS and Alloy 800HT in high-temperature and high-pressure water with zinc addition have been investigated by using Polarization curve, Mott-Schottky analysis and photocurrent method. The donor density, flat band and band gap of semiconductor behavior are analyzed to investigate the impact of zinc addition to the passive film. Analysis of the experimental results indicated that passive film formed on 316L and 800HT with zinc addition showed different electrochemical, photo-electrochemical and semiconductor properties. The results indicated that corrosion resistance of passive film from in high-temperature and high-pressure water with zinc addition was obviously better than that without zinc addition.


2022 ◽  
Author(s):  
Sultan Salim Al Shoaibi ◽  
Juan Chavez Florez ◽  
Shaima Al Farsi ◽  
Adnan Al Hinai ◽  
Alvaro Nunez ◽  
...  

Abstract This paper discusses the first fiber-optic (FO) installation in a vertical high-pressure high-temperature deep gas well in PDO, Oman. A specially designed fiber-optic cable was successfully installed and cemented behind the production casing, which was subsequently perforated in an oriented manner without damaging the cable. This paper also describes how the fiber-optic cable was used afterwards to acquire Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) data for the purpose of hydraulic fracturing diagnostics. Fiber-optic surveillance is becoming an increasingly important activity for well and reservoir surveillance. The added complexity of the fiber-optic installation will affect the well design, which is one of the elements that requires focused attention, especially when the fiber is installed behind casing. The impact on casing design, wellhead design, perforation strategy, and logging requirements will all be discussed. In order for a well to be completed with a permanent fiber-optic cable, a few critical procedures need to be followed, including: –modifying the wellhead design to include feedthrough ports for the cable;–optimizing the cement design;–imposing strict procedures to ensure the cable is installed behind the casing without getting stuck;–changing the perforation phasing to avoid damaging the cable;–mapping the location of the cable to allow the gun string to be oriented away from the cable. The fiber-optic cable itself needed to be designed to be protected in such a way that it would not be damaged during installation and completion (perf/frac) activities. Furthermore, the cable was also optimized to improve its detectability, to aid the oriented perforation. In deep gas wells, much more than in conventional shallow water injectors or oil producers, the well integrity aspect should be given special attention. Specifically, any risks related to unwanted gas leaks, either through the control line, poor cement, or because of other design errors should be avoided. In deep gas wells, high temperature and pressure will also play a big role in the expected lifespan of the cable. Finally, the well was hydraulically fractured in four stages, using the "plug-and-perf" technique, during which DAS and DTS data were acquired continuously and across all depths of the well. The data provided valuable information on the effectiveness of each of the frac stages, it could be used to analyze screen-outs and detect out-of-zone injection, and recommendations for the optimizations of future hydraulic frac designs could be derived. The fiber-optic data were also integrated with other open-hole data for improved understanding of the reservoir performance. The next step will be to acquire repeated time-lapse DAS and DTS data for production profiling, to gain more insights of how the long-term production performance is affected by the hydraulic frac operations.


2014 ◽  
Vol 56 ◽  
pp. 218-225 ◽  
Author(s):  
Biniam T. Kebede ◽  
Tara Grauwet ◽  
Leonard Mutsokoti ◽  
Stijn Palmers ◽  
Liesbeth Vervoort ◽  
...  

Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


Sign in / Sign up

Export Citation Format

Share Document