scholarly journals Copine 3 “CPNE3” is a novel regulator for insulin secretion and glucose uptake in pancreatic β-cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waseem El-Huneidi ◽  
Shabana Anjum ◽  
Abdul Khader Mohammed ◽  
Hema Unnikannan ◽  
Rania Saeed ◽  
...  

AbstractCopine 3 (CPNE3) is a calcium-dependent phospholipid-binding protein that has been found to play an essential role in cancer progression and stages. However, its role in pancreatic β-cell function has not been investigated. Therefore, we performed a serial of bioinformatics and functional experiments to explore the potential role of Cpne3 on insulin secretion and β-cell function in human islets and INS-1 (832/13) cells. RNA sequencing and microarray data revealed that CPNE3 is highly expressed in human islets compared to other CPNE genes. In addition, expression of CPNE3 was inversely correlated with HbA1c and reduced in human islets from hyperglycemic donors. Silencing of Cpne3 in INS-1 cells impaired glucose-stimulated insulin secretion (GSIS), insulin content and glucose uptake efficiency without affecting cell viability or inducing apoptosis. Moreover, mRNA and protein expression of the key regulators in glucose sensing and insulin secretion (Insulin, GLUT2, NeuroD1, and INSR) were downregulated in Cpne3-silenced cells. Taken together, data from the present study provides a new understanding of the role of CPNE3 in maintaining normal β-cell function, which might contribute to developing a novel target for future management of type 2 diabetes therapy.

Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 444-452 ◽  
Author(s):  
Kyuho Kim ◽  
Chang-Myung Oh ◽  
Mica Ohara-Imaizumi ◽  
Sangkyu Park ◽  
Jun Namkung ◽  
...  

The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic β-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases β-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in β-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of β-cell-specific Htr2b−/− (Htr2b βKO), Htr3a−/− (Htr3a knock-out [KO]), and β-cell-specific tryptophan hydroxylase 1 (Tph1)−/− (Tph1 βKO) mice on a high-fat diet (HFD). Htr2b βKO, Htr3a KO, and Tph1 βKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 βKO mice developed glucose intolerance, but Htr2b βKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 βKO mice, and 5-HT treatment improved insulin secretion from Tph1 βKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in β-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state.


2014 ◽  
Vol 223 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Michael Rouse ◽  
Antoine Younès ◽  
Josephine M Egan

Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against β-cell dysfunction, we studied their mechanism(s) of action in β-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic β-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic β-cells. In our current study, we found that both RES (0.1–10 μmol/l) and CUR (1–100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating β-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in β-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic β-cell function.


2019 ◽  
Vol 240 (3) ◽  
pp. R97-R105 ◽  
Author(s):  
Weiwei Xu ◽  
Jamie Morford ◽  
Franck Mauvais-Jarvis

One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose homeostasis by testosterone in male and females. Severe testosterone deficiency predisposes men to type 2 diabetes (T2D), while in contrast, androgen excess predisposes women to hyperglycemia. The role of androgen deficiency and excess in promoting visceral obesity and insulin resistance in men and women respectively is well established. However, although it is established that hyperglycemia requires β cell dysfunction to develop, the role of testosterone in β cell function is less understood. This review discusses recent evidence that the androgen receptor (AR) is present in male and female β cells. In males, testosterone action on AR in β cells enhances glucose-stimulated insulin secretion by potentiating the insulinotropic action of glucagon-like peptide-1. In females, excess testosterone action via AR in β cells promotes insulin hypersecretion leading to oxidative injury, which in turn predisposes to T2D.


Endocrinology ◽  
2008 ◽  
Vol 150 (5) ◽  
pp. 2072-2079 ◽  
Author(s):  
Eva Hammar ◽  
Alejandra Tomas ◽  
Domenico Bosco ◽  
Philippe A. Halban

Extracellular matrix has a beneficial impact on β-cell spreading and function, but the underlying signaling pathways have yet to be fully elucidated. In other cell types, Rho, a well-characterized member of the family of Rho GTPases, and its effector Rho-associated kinase (ROCK), play an important role as downstream mediators of outside in signaling from extracellular matrix. Therefore, a possible role of the Rho-ROCK pathway in β-cell spreading, actin cytoskeleton dynamics, and function was investigated. Rho was inhibited using a new cell-permeable version of C3 transferase, whereas the activity of ROCK was repressed using the specific ROCK inhibitors H-1152 and Y-27632. Inhibition of Rho and of ROCK increased spreading and improved both short-term and prolonged glucose-stimulated insulin secretion but had no impact on basal secretion. Inhibition of this pathway led to a depolymerization of the actin cytoskeleton. Furthermore, the impact of the inhibition of ROCK on stimulated insulin secretion was acute and reversible, suggesting that rapid signaling such as phosphorylation is involved. Finally, quantification of the activity of RhoA indicated that the extracellular matrix represses RhoA activity. Overall these results show for the first time that the Rho-ROCK signaling pathway contributes to the stabilization of the actin cytoskeleton and inhibits glucose-stimulated insulin secretion in primary pancreatic β-cells. Furthermore, they indicate that inhibition of this pathway might be one of the mechanisms by which the extracellular matrix exerts its beneficial effects on pancreatic β-cell function.


2015 ◽  
Vol 29 (5) ◽  
pp. 682-692 ◽  
Author(s):  
Safia Costes ◽  
Marti Boss ◽  
Anthony P. Thomas ◽  
Aleksey V. Matveyenko

Abstract Type 2 diabetes mellitus (T2DM) is characterized by pancreatic islet failure due to loss of β-cell secretory function and mass. Studies have identified a link between a variance in the gene encoding melatonin (MT) receptor 2, T2DM, and impaired insulin secretion. This genetic linkage raises the question whether MT signaling plays a role in regulation of β-cell function and survival in T2DM. To address this postulate, we used INS 832/13 cells to test whether activation of MT signaling attenuates proteotoxicity-induced β-cell apoptosis and through which molecular mechanism. We also used nondiabetic and T2DM human islets to test the potential of MT signaling to attenuate deleterious effects of glucotoxicity and T2DM on β-cell function. MT signaling in β-cells (with duration designed to mimic typical nightly exposure) significantly enhanced activation of the cAMP-dependent signal transduction pathway and attenuated proteotoxicity-induced β-cell apoptosis evidenced by reduced caspase-3 cleavage (∼40%), decreased activation of stress-activated protein kinase/Jun-amino-terminal kinase (∼50%) and diminished oxidative stress response. Activation of MT signaling in human islets was shown to restore glucose-stimulated insulin secretion in islets exposed to chronic hyperglycemia as well as in T2DM islets. Our data suggest that β-cell MT signaling is important for the regulation of β-cell survival and function and implies a preventative and therapeutic potential for preservation of β-cell mass and function in T2DM.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Linlin Zhang ◽  
Chunxiang Sheng ◽  
Feiye Zhou ◽  
Kecheng Zhu ◽  
Shushu Wang ◽  
...  

AbstractLoss of β cell identity and functional immaturity are thought to be involved in β cell failure in type 2 diabetes. CREB-binding protein (CBP) and its paralogue p300 act as multifunctional transcriptional co-activators and histone acetyltransferases (HAT) with extensive biological functions. However, whether the regulatory role of CBP/p300 in islet β cell function depends on the HAT activity remains uncertain. In this current study, A-485, a selective inhibitor of CBP/p300 HAT activity, greatly impaired glucose-stimulated insulin secretion from rat islets in vitro and in vivo. RNA-sequencing analysis showed a comprehensive downregulation of β cell and α cell identity genes in A-485-treated islets, without upregulation of dedifferentiation markers and derepression of disallowed genes. A-485 treatment decreased the expressions of genes involved in glucose sensing, not in glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. In the islets of prediabetic db/db mice, CBP/p300 displayed a significant decrease with key genes for β cell function. The deacetylation of histone H3K27 as well as the transcription factors Hnf1α and Foxo1 was involved in CBP/p300 HAT inactivation-repressed expressions of β cell identity and functional genes. These findings highlight the dominant role of CBP/p300 HAT in the maintenance of β cell identity by governing transcription network.


Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2612-2622 ◽  
Author(s):  
Ewa Gurgul-Convey ◽  
Katarzyna Hanzelka ◽  
Sigurd Lenzen

Arachidonic acid metabolites are crucial mediators of inflammation in diabetes. Although eicosanoids are established modulators of pancreatic β-cell function, the role of prostacyclin (prostaglandin I2) is unknown. Therefore, this study aimed to analyze the role of prostacyclin in β-cell function. Prostacyclin synthase (PGIS) was weakly expressed in rat islet cells but nevertheless significantly increased by incubation with 30 mM glucose, especially in non-β-cells. PGIS was overexpressed in INS1E cells, and the regulation of insulin secretion was analyzed. PGIS overexpression strongly potentiated glucose-induced insulin secretion along with increased insulin content and ATP production. Importantly, overexpression of PGIS potentiated only nutrient-induced insulin secretion. The effect of PGIS overexpression was mediated by prostacyclin released from insulin-secreting cells and dependent on prostacyclin receptor (IP receptor) activation, with concomitant cAMP production. The cAMP-mediated potentiation of glucose-induced insulin secretion by prostacyclin was independent of the protein kinase A pathway but strongly attenuated by the knockdown of the exchange protein directly activated by cAMP 2 (Epac2), pointing to a crucial role for Epac2 in this process. Thus, prostacyclin is a powerful potentiator of glucose-induced insulin secretion. It improves the secretory capacity by inducing insulin biosynthesis and probably by stimulating exocytosis. Our findings open a new therapeutical perspective for an improved treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document