scholarly journals Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity

2014 ◽  
Vol 223 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Michael Rouse ◽  
Antoine Younès ◽  
Josephine M Egan

Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against β-cell dysfunction, we studied their mechanism(s) of action in β-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic β-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic β-cells. In our current study, we found that both RES (0.1–10 μmol/l) and CUR (1–100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating β-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in β-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic β-cell function.

2021 ◽  
Author(s):  
Ping Gu ◽  
Yuege Lin ◽  
Qi Wan ◽  
Dongming Su ◽  
Qun Shu

Background: Increased insulin production and secretion by pancreatic β-cells are important for ensuring the high insulin demand during gestation. However, the underlying mechanism of β-cell adaptation during gestation or in gestational diabetes mellitus (GDM) remains unclear. Oxytocin is an important physiological hormone in gestation and delivery, and it also contributes to the maintenance of β-cell function. The aim of this study was to investigate the role of oxytocin in β-cell adaptation during pregnancy. Methods: The relationship between the blood oxytocin level and pancreatic β-cell function in patients with GDM and healthy pregnant women was investigated. Gestating and non-gestating mice were used to evaluate the in vivo effect of oxytocin signal on β-cells during pregnancy. In vitro experiments were performed on INS-1 insulinoma cells. Results: The blood oxytocin levels were lower in patients with GDM than in healthy pregnant women and were associated with impaired pancreatic β-cell function. Acute administration of oxytocin increased insulin secretion in both gestating and non-gestating mice. A three-week oxytocin treatment promoted the proliferation of pancreatic β-cells and increased the β-cell mass in gestating but not non-gestating mice. Antagonism of oxytocin receptors by atosiban impaired insulin secretion and induced GDM in gestating but not non-gestating mice. Oxytocin enhanced glucose-stimulated insulin secretion, activated the mitogen-activated protein kinase pathway, and promoted cell proliferation in INS-1 cells. Conclusions: These findings provide strong evidence that oxytocin is needed for β-cell adaptation during pregnancy to maintain β-cell function, and lack of oxytocin could be associated with the risk of GDM.


2007 ◽  
Vol 194 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Domenico Bosco ◽  
Dominique G Rouiller ◽  
Philippe A Halban

The aim of this study was to assess whether the expression of E-cadherin at the surface of rat β-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all β-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two β-cell sub-populations were sorted: one that was poorly labeled (‘ECad-low’) and another that was highly labeled (‘ECad-high’). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high β-cells was higher than that from ECad-low β-cells. Ca2+-dependent β-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of β-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet β-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of β-cell function.


2009 ◽  
Vol 296 (2) ◽  
pp. C346-C354 ◽  
Author(s):  
Fan Zhang ◽  
Deben Dey ◽  
Robert Bränström ◽  
Lars Forsberg ◽  
Ming Lu ◽  
...  

BLX-1002 is a novel small thiazolidinedione with no apparent affinity to peroxisome proliferator-activated receptors (PPAR) that has been shown to reduce glycemia in type 2 diabetes without adipogenic effects. Its precise mechanisms of action, however, remain elusive, and no studies have been done with respect to possible effects of BLX-1002 on pancreatic β-cells. We have investigated the influence of the drug on β-cell function in mouse islets in vitro. BLX-1002 enhanced insulin secretion stimulated by high, but not low or intermediate, glucose concentrations. BLX-1002 also augmented cytoplasmic free Ca2+ concentration ([Ca2+]i) at high glucose, an effect that was abolished by pretreatment with the Ca2+-ATPase inhibitor thapsigargin. In contrast, BLX-1002 did not interfere with voltage-gated Ca2+ channel or ATP-sensitive K+ channel activities. In addition, cellular NAD(P)H stimulated by glucose was not affected by the drug. The stimulatory effect of BLX-1002 on insulin secretion at high glucose was completely abolished by treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY-294002. Stimulation of the β-cells with BLX-1002 also induced activation of AMP-activated protein kinase (AMPK) at high glucose. Our study suggests that BLX-1002 potentiates insulin secretion only at high glucose in β-cells in a PI3K-dependent manner. This effect of BLX-1002 is associated with an increased [Ca2+]i mediated through Ca2+ mobilization, and an enhanced activation of AMPK. The glucose-sensitive stimulatory impact of BLX-1002 on β-cell function may translate into substantial clinical benefits of the drug in the management of type 2 diabetes, by avoidance of hypoglycemia.


2012 ◽  
Vol 215 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Liqiong Song ◽  
Wei Xia ◽  
Zhao Zhou ◽  
Yuanyuan Li ◽  
Yi Lin ◽  
...  

Phenolic estrogen pollutants, a class of typical endocrine-disrupting chemicals, have attracted public attention due to their estrogenic activities of imitating steroid hormone 17β-estradiol (E2) effects. Exposure to these pollutants may disrupt insulin secretion and be a risk factor for type 2 diabetes. In this study, we investigated the direct effects of phenolic estrogen diethylstilbestrol (DES), octylphenol (OP), nonylphenol (NP), and bisphenol A (BPA) on rat pancreatic isletsin vitro, whose estrogenic activities were DES>NP>OP>BPA. Isolated β-cells were exposed to E2, DES, OP, NP, or BPA (0, 0.1, 0.5, 2.5, 25, and 250 μg/l) for 24 h. Parameters of insulin secretion, content, and morphology of β-cells were measured. In the glucose-stimulated insulin secretion test, E2and DES increased insulin secretion in a dose-dependent manner in a 16.7 mM glucose condition. However, for BPA, NP, or OP with lower estrogenic activity, the relationship between the doses and insulin secretion was an inverted U-shape. Moreover, OP, NP, or BPA (25 μg/l) impaired mitochondrial function in β-cells and induced remarkable swelling of mitochondria with loss of distinct cristae structure within the membrane, which was accompanied by disruption of mRNA expression of genes playing a key role in β-cell function (Glut2(Slc2a2),Gck,Pdx1,Hnf1α,Rab27a, andSnap25), and mitochondrial function (Ucp2andOgdh). Therefore, these phenolic estrogens can disrupt islet morphology and β-cell function, and mitochondrial dysfunction is suggested to play an important role in the impairment of β-cell function.


2006 ◽  
Vol 34 (5) ◽  
pp. 811-814 ◽  
Author(s):  
K. Bender ◽  
P. Newsholme ◽  
L. Brennan ◽  
P. Maechler

The coupling of cytosolic glycolytic NADH production with the mitochondrial electron transport chain is crucial for pancreatic β-cell function and energy metabolism. The activity of lactate dehydrogenase in the β-cell is low, thus glycolysis-derived electrons are transported towards the mitochondrial matrix by a NADH shuttle system, which in turn regenerates cytosolic NAD+. Mitochondrial electron transport then produces ATP, the main coupling factor for insulin secretion. Aralar1, a Ca2+-sensitive member of the malate–aspartate shuttle expressed in β-cells, has been found to play a significant role in nutrient-stimulated insulin secretion and β-cell function. Increased capacity of Aralar1 enhances the responsiveness of the cell to glucose. Conversely, inhibition of the malate–aspartate shuttle results in impaired glucose metabolism and insulin secretion. Current research investigates potentiating or attenuating activities of various amino acids on insulin secretion, mitochondrial membrane potential and NADH production in Aralar1-overexpressing β-cells. This work may provide evidence for a central role of Aralar1 in the regulation of nutrient metabolism in the β-cells.


2021 ◽  
Author(s):  
Rebecca W.S. Cheung ◽  
Grazia Pizza ◽  
Pauline Chabosseau ◽  
Delphine Rolando ◽  
Alejandra Tomas ◽  
...  

Impaired pancreatic β-cell function and insulin secretion are hallmarks of type 2 diabetes. MicroRNAs are short non-coding RNAs that silence gene expression, vital for the development and function of endocrine cells. MiR-125b is a highly conserved miRNA abundant in β-cells, though its role in these cells remains unclear. Here, we show that miR-125b expression in human islets correlates with body mass index (BMI) of the donors and is regulated by glucose in an AMP-activated protein kinase-dependent manner in both mice and humans. Using and unbiased high-throughput approach, we identify dozens of direct gene targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Whereas inactivation of miR-125b in human β-cells led to shorter mitochondria and improved glucose stimulated insulin secretion, mice over-expressing mir-125b selectively in β-cells displayed defective insulin secretion and marked glucose intolerance. Moreover, the β-cells of these transgenic animals showed strongly reduced insulin content and secretion and contained enlarged lysosomal structures. Thus, miR125b provides a glucose-controlled regulator of organelle dynamics that negatively regulates insulin secretion in β-cells.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Idil I. Aigha ◽  
Essam M. Abdelalim

Abstract Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1087
Author(s):  
Dahae Lee ◽  
Jin Su Lee ◽  
Jurdas Sezirahiga ◽  
Hak Cheol Kwon ◽  
Dae Sik Jang ◽  
...  

Chocolate vine (Akebia quinata) is consumed as a fruit and is also used in traditional medicine. In order to identify the bioactive components of A. quinata, a phytosterol glucoside stigmasterol-3-O-β-d-glucoside (1), three triterpenoids maslinic acid (2), scutellaric acid (3), and hederagenin (4), and three triterpenoidal saponins akebia saponin PA (5), hederacoside C (6), and hederacolchiside F (7) were isolated from a 70% EtOH extract of the fruits of A. quinata (AKQU). The chemical structures of isolates 1–7 were determined by analyzing the 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data. Here, we evaluated the effects of AKQU and compounds 1–7 on insulin secretion using the INS-1 rat pancreatic β-cell line. Glucose-stimulated insulin secretion (GSIS) was evaluated in INS-1 cells using the GSIS assay. The expression levels of the proteins related to pancreatic β-cell function were detected by Western blotting. Among the isolates, stigmasterol-3-O-β-d-glucoside (1) exhibited strong GSIS activity and triggered the overexpression of pancreas/duodenum homeobox protein-1 (PDX-1), which is implicated in the regulation of pancreatic β-cell survival and function. Moreover, isolate 1 markedly induced the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), insulin receptor substrate-2 (IRS-2), phosphoinositide 3-kinase (PI3K), and Akt, which regulate the transcription of PDX-1. The results of our experimental studies indicated that stigmasterol-3-O-β-d-glucoside (1) isolated from the fruits of A. quinata can potentially enhance insulin secretion, and might alleviate the reduction in GSIS during the development of T2DM.


2008 ◽  
Vol 28 (9) ◽  
pp. 2971-2979 ◽  
Author(s):  
Yutaka Shigeyama ◽  
Toshiyuki Kobayashi ◽  
Yoshiaki Kido ◽  
Naoko Hashimoto ◽  
Shun-ichiro Asahara ◽  
...  

ABSTRACT Recent studies have demonstrated the importance of insulin or insulin-like growth factor 1 (IGF-1) for regulation of pancreatic β-cell mass. Given the role of tuberous sclerosis complex 2 (TSC2) as an upstream molecule of mTOR (mammalian target of rapamycin), we examined the effect of TSC2 deficiency on β-cell function. Here, we show that mice deficient in TSC2, specifically in pancreatic β cells (βTSC2−/− mice), manifest increased IGF-1-dependent phosphorylation of p70 S6 kinase and 4E-BP1 in islets as well as an initial increased islet mass attributable in large part to increases in the sizes of individual β cells. These mice also exhibit hypoglycemia and hyperinsulinemia at young ages (4 to 28 weeks). After 40 weeks of age, however, the βTSC2−/− mice develop progressive hyperglycemia and hypoinsulinemia accompanied by a reduction in islet mass due predominantly to a decrease in the number of β cells. These results thus indicate that TSC2 regulates pancreatic β-cell mass in a biphasic manner.


Sign in / Sign up

Export Citation Format

Share Document