scholarly journals Author Correction: The β2Tubulin, Rad50-ATPase and enolase cis-regulatory regions mediate male germline expression in Tribolium castaneum

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sher Afzal Khan ◽  
Emma Jakes ◽  
Kevin M. Myles ◽  
Zach N. Adelman
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sher Afzal Khan ◽  
Emma Jakes ◽  
Kevin M. Myles ◽  
Zach N. Adelman

AbstractGenetics-based pest management processes, including the sterile insect technique, are an effective method for the control of some pest insects. However, current SIT methods are not directly transferable to many important pest insect species due to the lack of genetic sexing strains. Genome editing is revolutionizing the way we conduct genetics in insects, including in Tribolium castaneum, an important genetic model and agricultural pest. We identified orthologues of β2Tubulin, Rad50-ATPase and enolase in T. castaneum. Using RT-PCR, we confirmed that these genes are predominantly expressed in the testis. PiggyBac-based transformation of T. castaneum cis-regulatory regions derived from Tc-β2t, Tc-rad50 or Tc-eno resulted in EGFP expression specifically in the T. castaneum testis. Additionally, we determined that each of these regulatory regions regulates EGFP expression in different cell types of the male gonad. Cis-regulatory regions from Tc-β2t produced EGFP expression throughout spermatogenesis and also in mature sperms; Tc-rad50 resulted in expression only in the haploid spermatid, while Tc-eno expressed EGFP in late spermatogenesis. In summary, the regulatory cis-regions characterized in this study are not only suited to study male gonadal function but could be used for development of transgenic sexing strains that produce one sex in pest control strategies.


2012 ◽  
Vol 23 (24) ◽  
pp. 4713-4724 ◽  
Author(s):  
Jeanne N. Jodoin ◽  
Mohammad Shboul ◽  
Poojitha Sitaram ◽  
Hala Zein-Sabatto ◽  
Bruno Reversade ◽  
...  

Recruitment of dynein motors to the nuclear surface is an essential step for nucleus–centrosome coupling in prophase. In cultured human cells, this dynein pool is anchored to nuclear pore complexes through RanBP2–Bicaudal D2 (BICD2) and Nup133– centromere protein F (CENP-F) networks. We previously reported that the asunder (asun) gene is required in Drosophila spermatocytes for perinuclear dynein localization and nucleus–centrosome coupling at G2/M of male meiosis. We show here that male germline expression of mammalian Asunder (ASUN) protein rescues asun flies, demonstrating evolutionary conservation of function. In cultured human cells, we find that ASUN down-regulation causes reduction of perinuclear dynein in prophase of mitosis. Additional defects after loss of ASUN include nucleus–centrosome uncoupling, abnormal spindles, and multinucleation. Coimmunoprecipitation and overlapping localization patterns of ASUN and lissencephaly 1 (LIS1), a dynein adaptor, suggest that ASUN interacts with dynein in the cytoplasm via LIS1. Our data indicate that ASUN controls dynein localization via a mechanism distinct from that of either BICD2 or CENP-F. We present a model in which ASUN promotes perinuclear enrichment of dynein at G2/M that facilitates BICD2- and CENP-F-mediated anchoring of dynein to nuclear pore complexes.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5785-5794 ◽  
Author(s):  
D. Bopp ◽  
C. Schutt ◽  
J. Puro ◽  
H. Huang ◽  
R. Nothiger

Gametogenesis in males and females differs in many ways. An important difference in Drosophila is that recombination between homologous chromosomes occurs only in female meiosis. Here, we report that this process relies on the correct functioning of Sex-lethal (Sxl) which is primarily known as the master gene in somatic sex determination. Certain alleles of this gene (Sxl(fs)) disrupt the germline, but not the somatic function of Sxl and cause an arrest of germ cell development during cystocyte proliferation. Using dominant suppressor mutations that relieve this early block in Sxl(fs) mutant females, we discovered additional requirements of Sxl for normal meiotic differentiation of the oocyte. Females mutant for Sxl(fs) and carrying a suppressor become fertile, but pairing of homologous chromosomes and formation of chiasmata is severely perturbed, resulting in an almost complete lack of recombinants and a high incidence of non-disjunction events. Similar results were obtained when germline expression of wild-type Sxl was compromised by mutations in virilizer (vir), a positive regulator of Sxl. Ectopic expression of a Sxl transgene in premeiotic stages of male germline development, on the other hand, is not sufficient to allow recombination to take place, which suggests that Sxl does not have a discriminatory role in this female-specific process. We propose that Sxl performs at least two tasks in oogenesis: an ‘early’ function in formation of the egg chamber, and a ‘late’ function in progression of the meiotic cell cycle, suggesting that both events are coordinated by a common mechanism.


2019 ◽  
Vol 29 (7) ◽  
pp. 1115-1122 ◽  
Author(s):  
Julia B. Raices ◽  
Paulo A. Otto ◽  
Maria D. Vibranovski

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tianxiong Yu ◽  
Kaili Fan ◽  
Deniz M. Özata ◽  
Gen Zhang ◽  
Yu Fu ◽  
...  

AbstractIn the male germ cells of placental mammals, 26–30-nt-long PIWI-interacting RNAs (piRNAs) emerge when spermatocytes enter the pachytene phase of meiosis. In mice, pachytene piRNAs derive from ~100 discrete autosomal loci that produce canonical RNA polymerase II transcripts. These piRNA clusters bear 5′ caps and 3′ poly(A) tails, and often contain introns that are removed before nuclear export and processing into piRNAs. What marks pachytene piRNA clusters to produce piRNAs, and what confines their expression to the germline? We report that an unusually long first exon (≥ 10 kb) or a long, unspliced transcript correlates with germline-specific transcription and piRNA production. Our integrative analysis of transcriptome, piRNA, and epigenome datasets across multiple species reveals that a long first exon is an evolutionarily conserved feature of pachytene piRNA clusters. Furthermore, a highly methylated promoter, often containing a low or intermediate level of CG dinucleotides, correlates with germline expression and somatic silencing of pachytene piRNA clusters. Pachytene piRNA precursor transcripts bind THOC1 and THOC2, THO complex subunits known to promote transcriptional elongation and mRNA nuclear export. Together, these features may explain why the major sources of pachytene piRNA clusters specifically generate these unique small RNAs in the male germline of placental mammals.


Sign in / Sign up

Export Citation Format

Share Document