scholarly journals Pheromones that correlate with reproductive success in competitive conditions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kenneth C. Luzynski ◽  
Doris Nicolakis ◽  
Maria Adelaide Marconi ◽  
Sarah M. Zala ◽  
Jae Kwak ◽  
...  

AbstractThe major urinary proteins (MUPs) of house mice (Mus musculus) bind and stabilize the release of pheromones and other volatile organic compounds (VOCs) from urinary scent marks, which mediate chemical communication. Social status influences MUP and VOC excretion, and the urinary scent of dominant males is attractive to females. Urinary pheromones influence the sexual behavior and physiology of conspecifics, and yet it is not known whether they also affect reproductive success. We monitored the excretion of urinary protein and VOCs of wild-derived house mice living in large seminatural enclosures to compare the sexes and to test how these compounds correlate with reproductive success. Among males, urinary protein concentration and VOC expression correlated with reproductive success and social status. Territorial dominance also correlated with reproductive success in both sexes; but among females, no urinary compounds were found to correlate with social status or reproductive success. We found several differences in the urinary protein and volatile pheromones of mice in standard cages versus seminatural enclosures, which raises caveats for conventional laboratory studies. These findings provide novel evidence for chemical signals that correlate with male reproductive success of house mice living in competitive conditions.

2021 ◽  
Author(s):  
Kenneth C. Luzynski ◽  
Doris Nicolakis ◽  
Maria Adelaide Marconi ◽  
Sarah M. Zala ◽  
Jae Kwak ◽  
...  

Abstract The major urinary proteins (MUPs) of house mice (Mus musculus) bind and stabilize the release of pheromones and other volatile organic compounds (VOCs) from urinary scent marks, which mediate chemical communication. Social status influences MUP and VOC excretion, and the urinary scent of dominant males is attractive to females. Urinary pheromones influence the sexual behavior and physiology of conspecifics, and yet it is not known whether they also affect reproductive success. We monitored the excretion of urinary protein and VOCs of wild-derived house mice living in large seminatural enclosures to compare the sexes and to test how these compounds correlate with reproductive success. Among males, urinary protein concentration and VOC expression correlated with reproductive success and social status. Territorial dominance also correlated with reproductive success in both sexes; but among females, no urinary compounds were found to correlate with social status or reproductive success. Notably, the large sex differences in chemosensory compounds found in laboratory studies were significantly lower when the mice lived in seminatural conditions. These findings provide novel evidence for chemical signals that correlate with male reproductive success of house mice living in competitive conditions.


Author(s):  
Caroline E. Payne ◽  
Nick Malone ◽  
Rick Humphries ◽  
Carl Bradbrook ◽  
Christina Veggerby ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Michaela Thoß ◽  
Viktoria Enk ◽  
Hans Yu ◽  
Ingrid Miller ◽  
Kenneth C. Luzynski ◽  
...  

2016 ◽  
Vol 12 (10) ◽  
pp. 3005-3016 ◽  
Author(s):  
Viktoria M. Enk ◽  
Christian Baumann ◽  
Michaela Thoß ◽  
Kenneth C. Luzynski ◽  
Ebrahim Razzazi-Fazeli ◽  
...  

We performed isoform-specific MUP quantification on MS1 and MS2 level in response to increased social interaction of male wild house mice by seminatural housing.


2021 ◽  
Author(s):  
Osamu SUZUKI ◽  
Minako KOURA ◽  
Kozue UCHIO-YAMADA ◽  
Mitsuho SASAKI

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5617 ◽  
Author(s):  
Won Lee ◽  
Eilene Yang ◽  
James P. Curley

Living in social hierarchies requires individuals to adapt their behavior and physiology. We have previously shown that male mice living in groups of 12 form linear and stable hierarchies with alpha males producing the highest daily level of major urinary proteins and urine. These findings suggest that maintaining alpha status in a social group requires higher food and water intake to generate energetic resources and produce more urine. To investigate whether social status affects eating and drinking behaviors, we measured the frequency of these behaviors in each individual mouse living in a social hierarchy with non-stop video recording for 24 h following the initiation of group housing and after social ranks were stabilized. We show alpha males eat and drink most frequently among all individuals in the hierarchy and had reduced quiescence of foraging both at the start of social housing and after hierarchies were established. Subdominants displayed a similar pattern of behavior following hierarchy formation relative to subordinates. The association strength of foraging behavior was negatively associated with that of agonistic behavior corrected for gregariousness (HWIG), suggesting animals modify foraging behavior to avoid others they engaged with aggressively. Overall, this study provides evidence that animals with different social status adapt their eating and drinking behaviors according to their physiological needs and current social environment.


2017 ◽  
Vol 284 (1863) ◽  
pp. 20171570 ◽  
Author(s):  
Won Lee ◽  
Amber Khan ◽  
James P. Curley

We have previously shown that male mice living in groups of 12 males establish and maintain stable linear social hierarchies with each individual having a defined social rank. However, it is not clear which social cues mice use to signal and recognize their relative social status within their hierarchy. In this study, we investigate how individual social status both in pairs and in groups affects the levels of major urinary proteins (MUPs) and specifically MUP20 in urine. We housed groups of adult outbred CD1 male mice in a complex social environment for three weeks and collected urine samples from all individuals repeatedly. We found that dominant males produce more MUPs than subordinates when housed in pairs and that the production of MUPs and MUP20 is significantly higher in alpha males compared with all other individuals in a social hierarchy. Furthermore, we found that hepatic mRNA expression of Mup3 and Mup20 is significantly higher in alpha males than in subordinate males. We also show that alpha males have lower urinary creatinine levels consistent with these males urinating more than others living in hierarchies. These differences emerged within one week of animals being housed together in social hierarchies. This study demonstrates that as males transition to become alpha males, they undergo physiological changes that contribute to communication of their social status that may have implications for the energetic demands of maintaining dominance.


2013 ◽  
Vol 86 (5) ◽  
pp. 1013-1021 ◽  
Author(s):  
Kerstin E. Thonhauser ◽  
Shirley Raveh ◽  
Attila Hettyey ◽  
Helmut Beissmann ◽  
Dustin J. Penn

2014 ◽  
Vol 42 (4) ◽  
pp. 886-892 ◽  
Author(s):  
Guadalupe Gómez-Baena ◽  
Stuart D. Armstrong ◽  
Marie M. Phelan ◽  
Jane L. Hurst ◽  
Robert J. Beynon

The genomes of rats and mice both contain a cluster of multiple genes that encode small (18–20 kDa) eight-stranded β-barrel lipocalins that are expressed in multiple secretory tissues, some of which enter urine via hepatic biosynthesis. These proteins have been given different names, but are mostly generically referred to as MUPs (major urinary proteins). The mouse MUP cluster is increasingly well understood, and, in particular, a number of roles for MUPs in chemical communication between conspecifics have been established. By contrast, the literature on the rat orthologues is much less well developed and is fragmented. In the present review, we summarize current knowledge on the MUPs from the Norway (or brown) rat, Rattus norvegicus.


Sign in / Sign up

Export Citation Format

Share Document