scholarly journals Rapid characterization of feline leukemia virus infective stages by a novel nested recombinase polymerase amplification (RPA) and reverse transcriptase-RPA

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sitthichok Lacharoje ◽  
Somporn Techangamsuwan ◽  
Nuntaree Chaichanawongsaroj

AbstractFeline leukemia virus (FeLV) is a major viral disease in cats, causing leukemia and lymphoma. The molecular detection of FeLV RNA and the DNA provirus are important for staging of the disease. However, the rapid immunochromatographic assay commonly used for antigen detection can only detect viremia at the progressive stage. In this study, nested recombinase polymerase amplification (nRPA) was developed for exogenous FeLV DNA provirus detection, and reverse transcriptase polymerase amplification (RT-RPA) was developed for the detection of FeLV RNA. The approaches were validated using 108 cats with clinicopathologic abnormalities due to FeLV infection, and from 14 healthy cats in a vaccination plan. The nRPA and RT-RPA assays could rapidly amplify the FeLV template, and produced high sensitivity and specificity. The FeLV detection rate in regression cats by nRPA was increased up to 45.8% compared to the rapid immunochromatographic assay. Hence, FeLV diagnosis using nRPA and RT-RPA are rapid and easily established in low resource settings, benefiting FeLV prognosis, prevention, and control of both horizontal and vertical transmission.

2015 ◽  
Vol 113 ◽  
pp. 44-50 ◽  
Author(s):  
Kosaku Nishimura ◽  
Kanta Yokokawa ◽  
Tetsuro Hisayoshi ◽  
Kosuke Fukatsu ◽  
Ikumi Kuze ◽  
...  

2015 ◽  
Vol 197 ◽  
pp. 137-150 ◽  
Author(s):  
A. Katrin Helfer-Hungerbuehler ◽  
Stefan Widmer ◽  
Yvonne Kessler ◽  
Barbara Riond ◽  
Felicitas S. Boretti ◽  
...  

2020 ◽  
Author(s):  
Mirela Imre ◽  
Cristina Văduva ◽  
Gheorghe Dărăbuș ◽  
Sorin Morariu ◽  
Viorel Herman ◽  
...  

Abstract Background: The hemotropic mycoplasmas (hemoplasmas) of the genus Mycoplasma are recognized as important bacteria that parasitize red blood cells, causing hemolytic anemia in many mammalian species, including cats. No information is available concerning the presence of feline hemoplasma infections in cats in Romania. Thus, the objective of the present study was to provide data on the occurrence and molecular characterization of hemotropic mycoplasmas in client-owned cats in Romania.Methods: Blood samples from 51 unhealthy cats, originating from Timişoara Municipality, Romania, were screened for the presence of hemoplasmas using conventional polymerase chain reaction targeting the 16S rRNA gene and sequencing assays. PCR-positive samples were subsequently analyzed by phylogenetic and population genetic analysis.Results: Molecular analysis revealed 11 (21.6%) positive samples, consisting of 8 (72.7%) Candidatus Mycoplasma haemominutum and 3 (27.3%) Mycoplasma haemofelis confirmed positives. Candidatus Mycoplasma turicensis was not detected, and no co-infections were registered. No significant associations (p > 0.05) were found between the hemoplasma infection status and age, gender, breed, presence of ectoparasites, feline leukemia virus/feline immunodeficiency virus (FeLV/FIV) positivity of cats, or the sampling season. However, outdoor access was positively associated (p=0.049) with infection and could be considered a risk factor (OR=4.1) in acquiring feline hemotropic mycoplasmas. Phylogenetic analysis revealed that our sequences clustered with those selected from the GenBank database in two distinct clades. The registered population genetic indices were strongly supportive of the great variance in sequences between the recorded Mycoplasma species.Conclusions: The findings support the occurrence of feline hemoplasma infections in previously uninvestigated territories of Europe, providing useful information for small animal practitioners. To our knowledge, the present survey is the first reported molecular evidence of feline hemoplasma infections in Romania.


2008 ◽  
Vol 14 (2) ◽  
pp. 252-259 ◽  
Author(s):  
Meredith A. Brown ◽  
Mark W. Cunningham ◽  
Alfred L. Roca ◽  
Jennifer L. Troyer ◽  
Warren E. Johnson ◽  
...  

Author(s):  
N. D. Love ◽  
R. N. Parthasarathy ◽  
S. R. Gollahalli

Knowledge of the combustion and pollutant emission characteristics is important in the application of both existing and newly developed fuels. A technique for the rapid characterization of flame radiation properties and emission characteristics of liquid fuels was developed for this purpose. Liquid fuel was injected into a heated air stream at known rates with a syringe pump; the feed line was heated (temperature of 425°C) to pre-vaporize the fuel before burning, to avoid the effects of evaporation parameters on measurements. Temperatures of the fuel and air were monitored using K-type thermocouples embedded within the feed lines. A laminar methane-air flame was issued from a stainless steel tubular burner (9.5mm inner diameter) and used as the ignition source. The methane supply was shut off after the onset of the burning of the vaporized liquid fuel, in order to eliminate the effects of burning methane in the measurements. Several liquid fuels were tested, including commercially available petroleum-based No. 2 diesel fuel, canola methyl ester (CME B 100) biodiesel, kerosene, methanol, toluene, and selected alkanes. A steady burning flame was achieved for all fuels. Radiative heat flux measurements were made with a high-sensitivity pyrheliometer and the radiant fraction of heat release calculated. The radiant heat fraction served as an indication of sooting tendency of the fuels. NO, CO, and CO2 emission measurements were also made. The measurements demonstrate the feasibility of the current technique for the rapid characterization of combustion properties of liquid fuels, utilizing small fuel quantities.


Sign in / Sign up

Export Citation Format

Share Document