scholarly journals Response analysis of orthotropic steel deck pavement based on interlayer contact bonding condition

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuntao Wang ◽  
Changhao Zhang ◽  
Ruijuan Sun

AbstractIn this research the interlayer contact condition was considered between the adjacent layers of orthotropic steel deck pavement, and an interface contact bonding model was applied to simulate the interlayer bonding condition and evaluate the response of deck pavement under vehicle loads. An advantage of this model is that it can simulate not only the full-bond condition but also the debonding condition at somewhere between adjacent layers. The responses of the orthotropic steel deck pavement were calculated and analyzed by the model, and it found that this model is reasonable and credible to evaluate the responses of the deck pavement comparing with the previous researches. The full-bond condition was an ideal condition between adjacent layers, which was prone to underestimate the responses and deformation of the deck pavement. Moreover, the position and size of the disengaging area have a notable influence on the tensile strain at the top of SMA layer and the bottom of GA layer, and the tensile strain of them also increase with the increase of the disengaging area. Finally, the responses of the steel deck pavement changed obviously when the vehicle speed increase, so the suitable speed limit may reduce the responses and deformation for prolonging the service life of the orthotropic steel deck pavement.

2018 ◽  
Vol 18 (2) ◽  
pp. 610-620 ◽  
Author(s):  
Longwei Zhang ◽  
Hua Zhao ◽  
Eugene J OBrien ◽  
Xudong Shao

This article outlines a Virtual Monitoring approach for fatigue life assessment of orthotropic steel deck bridges. Bridge weigh-in-motion was used to calculate traffic loads which were then used to calculate “virtual” strains. Some of these strains were checked through long-term monitoring of dynamic strain data. Field tests, incorporating calibration with pre-weighed trucks and monitoring the response to regular traffic, were conducted at Fochen Bridge, which has an orthotropic steel deck and is located in Foshan City, China. In the calibration tests, a 45-t 3-axle truck ran repeatedly across Lane 2, the middle lane in a 3-lane carriageway. The results show that using an influence surface to weigh vehicles can improve the accuracy of the weights and, by inference, of remaining service life calculations. The most fatigue-prone position was found to be at the cutout in the diaphragms. Results show that many vehicles are overweight—the maximum gross vehicle weight recorded was 148 t, nearly 3.6 times heavier than the fatigue design truck.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 4256-4265
Author(s):  
Carmine Molinaro ◽  
Roberto Sorge ◽  
Gennaro Fiscina

1997 ◽  
pp. 161-171 ◽  
Author(s):  
Masanori Iwasaki ◽  
Koh Nagata ◽  
Takehiro Nishikawa ◽  
Tatsuya Ojio ◽  
Kentaro Yamada

2008 ◽  
Vol 44 (9-10) ◽  
pp. 580-594 ◽  
Author(s):  
X. Liu ◽  
T.O. Medani ◽  
A. Scarpas ◽  
M. Huurman ◽  
A.A.A. Molenaar

2013 ◽  
Vol 579-580 ◽  
pp. 841-844
Author(s):  
Zhao Cao ◽  
Xiao Wu ◽  
Qing Yang

With the increasingly outstanding of the traffic safety issue, the human factors in People-Vehicle-Road System are being emphasized gradually. Takes Jinhua suburb asphalt mountain road (two-lane, multiple steep slopes) for example, this study focuses on road engineering response analysis on driving reaction, design optimization of road engineering base on driving response. A driver over 3 driving years steered 5-seat car in 4 kilometers long experimental road, kept the vehicle speed (V) under 40km/h. Heartbeat rate of the driver was monitored by dynamic Holter through driving process. The analysis shows that there is a linear positive correlation between Heart beat growth rate (Ni) and V, a nearly positive correlation between lateral force coefficient (μ) and Ni, and nearly inversely proportional between plane curve radius (R) and slope (i). It should decrease R appropriately when road slope (i) much sharply in road alignment design. There is a polynomial relation between Ni, V and R. As R increases, both Ni and V reduce firstly, and then rise. When R ranges from 240 to 500 meter, stress gradually ease; while R exceeds 500 meter, driving reaction tension gradually rise. R<550 m, i <6% and slope length under 300 m in the experimental road. When instructional speed <40km/h, then Ni was 30.2% and μ was 0.25. Its benefit for driving safety to keep drivers in appropriate tension in such situation.


Sign in / Sign up

Export Citation Format

Share Document