scholarly journals Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Bihanic ◽  
Eddy Petit ◽  
Roseline Perrot ◽  
Lucie Cases ◽  
Armelle Garcia ◽  
...  

AbstractNew Caledonian endemic Mn-hyperaccumulator Grevillea meisneri is useful species for the preparation of ecocatalysts, which contain Mn–Ca oxides that are very difficult to synthesize under laboratory conditions. Mechanisms leading to their formation in the ecocatalysts are unknown. Comparing tissue-level microdistribution of these two elements could provide clues. We studied tissue-level distribution of Mn, Ca, and other elements in different tissues of G. meisneri using micro-X-Ray Fluorescence-spectroscopy (μXRF), and the speciation of Mn by micro-X-ray Absorption Near Edge Structure (µXANES), comparing nursery-grown plants transplanted into the site, and similar-sized plants growing naturally on the site. Mirroring patterns in other Grevillea species, Mn concentrations were highest in leaf epidermal tissues, in cortex and vascular tissues of stems and primary roots, and in phloem and pericycle–endodermis of parent cluster roots. Strong positive Mn/Ca correlations were observed in every tissue of G. meisneri where Mn was the most concentrated. Mn foliar speciation confirmed what was already reported for G. exul, with strong evidence for carboxylate counter-ions. The co-localization of Ca and Mn in the same tissues of G. meisneri might in some way facilitate the formation of mixed Ca–Mn oxides upon preparation of Eco-CaMnOx ecocatalysts from this plant. Grevillea meisneri has been successfully used in rehabilitation of degraded mining sites in New Caledonia, and in supplying biomass for production of ecocatalysts. We showed that transplanted nursery-grown seedlings accumulate as much Mn as do spontaneous plants, and sequester Mn in the same tissues, demonstrating the feasibility of large-scale transplantation programs for generating Mn-rich biomass.

2021 ◽  
Author(s):  
Camille Bihanic ◽  
Eddy Petit ◽  
Roseline Perrot ◽  
Lucie Cases ◽  
Armelle Garcia ◽  
...  

Abstract • Grevillea meisneri, an endemic New Caledonian Mn-hyperaccumulator, is used in rehabilitation of degraded mining sites on the island. Large-scale programs require transplanting nursery-grown seedlings, but effects of the nursery environment on Mn tolerance of transplants and their capacity to hyper-accumulate Mn are unknown, slowing rehabilitation efforts.• We studied tissue-level distribution of Mn and other elements in different tissues of G. meisneri using micro-X-Ray Fluorescence spectroscopy (μXRF), comparing nursery-grown plants transplanted into the site and sampled seven years later, and similar-sized plants that had grown spontaneously in the site. • Mirroring patterns in other Mn-hyperaccumulators, Mn was preferentially accumulated in leaves but was also present in roots. Concentrations were highest in leaf epidermal tissues, in cortex and vascular tissues of stems and primary roots, and in phloem and pericycle-endodermis of parent cluster roots. Although abundant in soil, Ni was absent from all tissues of G. meisneri. Ca was always co-localised with Mn. Preferential uptake of Mn vs Ni in roots implies as-yet-uncharacterized specific Mn-transporters, while Ca and Mn co-localisation suggests shared transport pathways. • No differences were observed in concentration and distribution of Mn in transplanted and spontaneously-growing plants. Nursery-grown transplants should be highly suitable for large-scale, high-throughput rehabilitation programs.


2017 ◽  
Vol 95 (11) ◽  
pp. 1151-1155
Author(s):  
Yuanhong Tang ◽  
Zhiqiang Wang ◽  
Dongniu Wang ◽  
Jian Wang ◽  
Tsun-Kong Sham

Large-scale SiO2 hollow nanoparticles were synthesized by a sol-gel method. The composition, morphology, and chemical bonding information of SiO2 hollow nanoparticles were studied by X-ray absorption near edge structure (XANES) and scanning transmission X-ray microscopy (STXM). XANES at the Si L-edge and K-edge reveal the characteristics of hollow nanoparticles, which are essentially amorphous SiO2 with a slightly longer Si–O bond than SiO2 nanoparticles on average and deficiencies in oxygen. Individual SiO2 hollow spheres were also examined using STXM, which provides spectromicroscopic information, as well as the absolute thickness, of the sample.


2019 ◽  

<p>Here the effectiveness of cation selective membranes, produced for divalent mercury (Hg2+) preconcetration from aqueous bodies, is examined. To this end, the behavior of PVC-based membranes, functionalized with dithizone for mercury complexation, is examined by means of Energy Dispersive X-ray Fluorescence (EDXRF) and total reflection - X-ray absorption near-edge structure (TXRF–XANES) techniques. In our previous works, we successfully immobilized dithizone on PVC-based thin film substrates, creating novel Hg-selective membranes, and identified the optimal experimental parameters affecting mercury sorption from water samples. Nonetheless, the question remains, to what extent dithizone is responsible for mercury complexation on the membrane surface, or it just improves the membrane’s active surface area thus simply improving the adsorptive effect. Using the EDXRF technique it appears that membranes functionalized with dithizone has a much higher efficiency (by up to threefold) in preconcetrating mercury from water matrices, compared to the non-functionalized membranes. Then, the membranes were also examined by means of TXRF–XANES and it was identified that indeed mercury-dithizone complex is produced on the membrane surface, which is responsible for the much higher mercury sorption, compared to the non-functionalized membranes. Also, the XANES mercury-dithizone spectrum is presented. Given polymer membrane simple manufacturing procedure and their low cost this study works towards establishing a new method for very low concentration mercury analysis (sub-ppb levels) as well as mercury collection from aqueous bodies, provided that the membranes are produced and used in large-scale routine works.</p>


Author(s):  
H. Ade ◽  
B. Hsiao ◽  
G. Mitchell ◽  
E. Rightor ◽  
A. P. Smith ◽  
...  

We have used the Scanning Transmission X-ray Microscope at beamline X1A (X1-STXM) at Brookhaven National Laboratory (BNL) to acquire high resolution, chemical and orientation sensitive images of polymeric samples as well as point spectra from 0.1 μm areas. This sensitivity is achieved by exploiting the X-ray Absorption Near Edge Structure (XANES) of the carbon K edge. One of the most illustrative example of the chemical sensitivity achievable is provided by images of a polycarbonate/pol(ethylene terephthalate) (70/30 PC/PET) blend. Contrast reversal at high overall contrast is observed between images acquired at 285.36 and 285.69 eV (Fig. 1). Contrast in these images is achieved by exploring subtle differences between resonances associated with the π bonds (sp hybridization) of the aromatic groups of each polymer. PET has a split peak associated with these aromatic groups, due to the proximity of its carbonyl groups to its aromatic rings, whereas PC has only a single peak.


2016 ◽  
Vol 88 (7) ◽  
pp. 3826-3835 ◽  
Author(s):  
Bernhard Hesse ◽  
Murielle Salome ◽  
Hiram Castillo-Michel ◽  
Marine Cotte ◽  
Barbara Fayard ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yiming Chen ◽  
Chi Chen ◽  
Chen Zheng ◽  
Shyam Dwaraknath ◽  
Matthew K. Horton ◽  
...  

AbstractThe L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.


MRS Advances ◽  
2017 ◽  
Vol 2 (29) ◽  
pp. 1545-1550 ◽  
Author(s):  
Nicholas L. McDougall ◽  
Jim G. Partridge ◽  
Desmond W. M. Lau ◽  
Philipp Reineck ◽  
Brant C. Gibson ◽  
...  

ABSTRACTCubic boron nitride (cBN) is a synthetic wide band gap material that has attracted attention due to its high thermal conductivity, optical transparency and optical emission. In this work, defects in cBN have been investigated using experimental and theoretical X-ray absorption near edge structure (XANES). Vacancy and O substitutional defects were considered, with O substituted at the N site (ON) to be the most energetically favorable. All defects produce unique signatures in either the B or N K-edges and can thus be identified using XANES. The calculations coupled with electron-irradiation / annealing experiments strongly suggest that ON is the dominant defect in irradiated cBN and remains after annealing. This defect is a likely source of optical emission in cBN.


Sign in / Sign up

Export Citation Format

Share Document