scholarly journals Electrical performance of efficient quad-crescent-shaped Si nanowire solar cell

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ramy El-Bashar ◽  
Mohamed Hussein ◽  
Salem F. Hegazy ◽  
Yehia Badr ◽  
B. M. A. Rahman ◽  
...  

AbstractThe electrical characteristics of quad-crescent-shaped silicon nanowire (NW) solar cells (SCs) are numerically analyzed and as a result their performance optimized. The structure discussed consists of four crescents, forming a cavity that permits multiple light scattering with high trapping between the NWs. Additionally, new modes strongly coupled to the incident light are generated along the NWs. As a result, the optical absorption has been increased over a large portion of light wavelengths and hence the power conversion efficiency (PCE) has been improved. The electron–hole (e–h) generation rate in the design reported has been calculated using the 3D finite difference time domain method. Further, the electrical performance of the SC reported has been investigated through the finite element method, using the Lumerical charge software package. In this investigation, the axial and core–shell junctions were analyzed looking at the reported crescent and, as well, conventional NW designs. Additionally, the doping concentration and NW-junction position were studied in this design proposed, as well as the carrier-recombination-and-lifetime effects. This study has revealed that the high back surface field layer used improves the conversion efficiency by $$\sim$$ ∼ 80%. Moreover, conserving the NW radial shell as a low thickness layer can efficiently reduce the NW sidewall recombination effect. The PCE and short circuit current were determined to be equal to 18.5% and 33.8 mA$$/\hbox {cm}^2$$ / cm 2 for the axial junction proposed. However, the core–shell junction shows figures of 19% and 34.9 mA$$/\hbox {cm}^2$$ / cm 2 . The suggested crescent design offers an enhancement of 23% compared to the conventional NW, for both junctions. For a practical surface recombination velocity of $$10^{2}$$ 10 2 cm/s, the PCE of the proposed design, in the axial junction, has been reduced to 16.6%, with a reduction of 11%. However, the core–shell junction achieves PCE of 18.7%, with a slight reduction of 1.6%. Therefore, the optoelectronic performance of the core–shell junction was marginally affected by the NW surface recombination, compared to the axial junction.

2012 ◽  
Vol 472-475 ◽  
pp. 1846-1850
Author(s):  
Shan Shan Dai ◽  
Gao Jie Zhang ◽  
Xiang Dong Luo ◽  
Jing Xiao Wang ◽  
Wen Jun Chen ◽  
...  

In this work, the effect of aluminum back surface field formed by screen printed various amount of Al paste on the effective rear surface recombination velocity (Seff) and the internal rear reflectance coeffeicient (Rb) of commercial mono-silicon solar cells was investigated. We demonstrated the effect of Seffand Rbon the performance of Al-BSF solar cells by simulating them with PC1D. The simulated results showed that the lower Seffcould get higher open circuit voltage (Voc), at the same time, the larger Rbcould get higher short-circuit current (Isc). Experimentally, we investigated the Seffand Rbthrough depositing Al paste with various amount (3.7, 5, 6, and 8 mg/cm2) for fabricating Al-BSF mono-silicon solar cells. Four group cells were characterized by light I-V, spectral response, hemispherical reflectance and scanning electron microscope (SEM) measurements. It was found that, a minimum Seffof 350 cm/s was gotten from the cells with Al paste of 8 mg/cm2, which was extracted by matching quantum efficiency (QE) from 800 nm to 1200 nm with PC1D, and a maximum Rbof 53.5% was obtained from Al paste of 5 mg/cm2by calculating at 1105 nm with PC1D. When the amount of Al paste was higher than 5mg/cm2, there were less Seffand lower Rb. On the other hand, when Al amount was 3.7mg/cm2, it was too little to form a closed BSF. Based on the SEM graphs and simulations with PC1D, a simple explaination was proposed for the experimental results.


2018 ◽  
Vol 43 ◽  
pp. 01006 ◽  
Author(s):  
Ferdiansjah ◽  
Faridah ◽  
Kelvian Tirtakusuma Mularso

Back Surface Field (BSF) has been used as one of means to enhance solar cell performance by reducing surface recombination velocity (SRV). One of methods to produce BSF is by introducing highly doped layer on rear surface of the wafer. Depending on the type of the dopant in wafer, the BSF layer could be either p+ or n+. This research aims to compare the performance of BSF layer both in p-type and n-type wafer in order to understand the effect of BSF on both wafer types. Monociystalline silicon wafer with thickness of 300 μm. area of 1 cm2, bulk doping level NB = 1.5×1016/cm3 both for p-type wafer and n-type wafer are used. Both wafer then converted into solar cell by adding emitter layer with concentration NE =7.5×1018/cm3 both for p-type wafer and n-type wafer. Doping profile that is used for emitter layer is following complementary error function (erfc) distribution profile. BSF concentration is varied from 1×1017/cm3 to 1×1020/cm3 for each of the cell. Solar cell performance is tested under standard condition, with AM1.5G spectrum at 1000 W/m2. Its output is measured based on its open circuit voltage (Voc). short circuit current density (JSC), efficiency (η). and fill factor (FF). The result shows that the value of VOC is relatively constant along the range of BSF concentration, which is 0.694 V – 0.702 V. The same pattern is also observed in FF value which is between 0.828 – 0.831. On the other hand, value of JSC and efficiency will drop against the increase of BSF concentration. Highest JSC which is 0.033 A/cm2 and highest efficiency which is 18.6% is achieved when BSF concentration is slightly higher than bulk doping level. The best efficiency can be produced when BSF concentration is around 1×1017cm-3.. This result confirms that surface recombination velocity has been reduced due to the increase in cell’s short circuit current density and its efficiency. In general both p-type and n-type wafer will produce higher efficiency when BSF is applied. However, the increase is larger in p-type wafer than in n-type wafer. Better performance for solar cell is achieved when BSF concentration is slightly higher that bulk doping level because at very high BSF concentration the cell’s efficiency will be decreased.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ho Chang ◽  
Chih-Hao Chen ◽  
Mu-Jung Kao ◽  
Hsin-Han Hsiao

This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2core-shell-type nanocomposites are mixed with Degussa P25 TiO2in different proportions. Triton X-100 is added and polyethylene glycol (PEG) at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.


Nanoscale ◽  
2021 ◽  
Author(s):  
Qing Xu ◽  
Danyang Li ◽  
Haijun Zhou ◽  
Biaoqi Chen ◽  
Junlei Wang ◽  
...  

We describe the synthesis of MnO2-coated porous Pt@CeO2 core–shell nanostructures (Pt@CeO2@MnO2) as a new theranostic nano-platform. The porous Pt cores endow the core–shell nanostructures with high photothermal conversion efficiency (80%)...


1988 ◽  
Vol 63 (9) ◽  
pp. 4683-4687 ◽  
Author(s):  
Leendert A. Verhoef ◽  
Albert Zondervan ◽  
Fredrik A. Lindholm ◽  
Mark B. Spitzer ◽  
Christopher J. Keavney

2007 ◽  
Vol 989 ◽  
Author(s):  
Qi Wang ◽  
Matt R. Page ◽  
Eugene Iwancizko ◽  
Yueqin Xu ◽  
Lorenzo Roybal ◽  
...  

AbstractHigh open-circuit voltage (Voc) silicon heterojunction (SHJ) solar cells are fabricated in double-heterojunction a-Si:H/c-Si/a-Si:H structures using low temperature (<225°C) hydrogenated amorphous silicon (a-Si:H) contacts deposited by hot-wire chemical vapor deposition (HWCVD). On p-type c-Si float-zone wafers, we used an amorphous n/i contact to the top surface and an i/p contact to the back surface to obtain a Voc of 667 mV in a 1 cm2 cell with an efficiency of 18.2%. This is the best reported p-type SHJ voltage. In our labs, it improves over the 652 mV cell obtained with a front amorphous n/i heterojunction emitter and a high-temperature alloyed Al back-surface-field contact. On n-type c-Si float-zone wafers, we used an a Si:H (p/i) front emitter and an a-Si:H (i/n) back contact to achieve a Voc of 691 mV on 1 cm2 cell. Though not as high as the 730 mV reported by Sanyo on n-wafers, this is the highest reported Voc for SHJ c-Si cells processed by the HWCVD technique. We found that effective c-Si surface cleaning and a double-heterojunction are keys to obtaining high Voc. Transmission electron microscopy reveals that high Voc cells require an abrupt interface from c-Si to a-Si:H. If the transition from the base wafer to the a-Si:H incorporates either microcrystalline or epitaxial Si at c Si interface, a low Voc will result. Lifetime measurement shows that the back-surface-recombination velocity (BSRV) can be reduced to ~15 cm/s through a-Si:H passivation. Amorphous silicon heterojunction layers on crystalline wafers thus combine low-surface recombination velocity with excellent carrier extraction.


2015 ◽  
Vol 787 ◽  
pp. 3-7 ◽  
Author(s):  
S. Karuppuchamy ◽  
C. Brundha

We demonstrated the construction and performance of dye-sensitized solar cells (DSCs) based on nanoparticles of TiO2coated with thin shells of MgO by simple solution growth technique. The XRD patterns confirm the presence of both TiO2and MgO in the core-shell structure. The effect of varied shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that MgO shells of all thicknesses perform as barriers that improve open-circuit voltage (Voc) of the DSCs only at the expense of a larger decrease in short-circuit current density (Jsc). The energy conversion efficiency was greatly dependent on the thickness of MgO on TiO2film, and the highest efficiency of 4.1% was achieved at the optimum MgO shell layer.


Sign in / Sign up

Export Citation Format

Share Document