scholarly journals Combined effects of double mutations on catalytic activity and structural stability contribute to clinical manifestations of glucose-6-phosphate dehydrogenase deficiency

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Phonchanan Pakparnich ◽  
Sirapapha Sudsumrit ◽  
Mallika Imwong ◽  
Teeraporn Suteewong ◽  
Kamonwan Chamchoy ◽  
...  

AbstractGlucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans, affecting ~ 500 million worldwide. A detailed study of the structural stability and catalytic activity of G6PD variants is required to understand how different mutations cause varying degrees of enzyme deficiency, reflecting the response of G6PD variants to oxidative stress. Furthermore, for G6PD double variants, investigating how two mutations jointly cause severe enzyme deficiency is important. Here, we characterized the functional and structural properties of nine G6PD variants: G6PD Gaohe, G6PD Mahidol, G6PD Shoklo, G6PD Canton, G6PD Kaiping, G6PD Gaohe + Kaiping, G6PD Mahidol + Canton, G6PD Mahidol + Kaiping and G6PD Canton + Kaiping. All variants were less catalytically active and structurally stable than the wild type enzyme, with G6PD double mutations having a greater impact than single mutations. G6PD Shoklo and G6PD Canton + Kaiping were the least catalytically active single and double variants, respectively. The combined effects of two mutations were observed, with the Canton mutation reducing structural stability and the Kaiping mutation increasing it in the double mutations. Severe enzyme deficiency in the double mutants was mainly determined by the trade-off between protein stability and catalytic activity. Additionally, it was demonstrated that AG1, a G6PD activator, only marginally increased G6PD enzymatic activity and stability.

Endocrinology ◽  
2003 ◽  
Vol 144 (3) ◽  
pp. 937-946 ◽  
Author(s):  
Cyntia Curcio-Morelli ◽  
Balazs Gereben ◽  
Ann Marie Zavacki ◽  
Brian W. Kim ◽  
Stephen Huang ◽  
...  

The goal of the present investigation was to test the hypothesis that types 1, 2, and 3 iodothyronine selenodeiodinases (D1, D2, and D3) can form homodimers. The strategy included transient coexpression of wild-type (wt) deiodinases (target), and FLAG-tagged alanine or cysteine mutants (bait) in human embryonic kidney epithelial cells. SDS-PAGE of the immunoprecipitation pellet of 75Se-labeled cell lysates using anti-FLAG antibody revealed bands of the correct sizes for the respective wt enzymes, which corresponded to approximately 2–5% of the total deiodinase protein in the cell lysate. Western blot analysis with anti-FLAG antibody of lysates of cells transiently expressing individual FLAG-tagged-cysteine deiodinases revealed specific monomeric bands for each deiodinase and additional minor bands of relative molecular mass (Mr) of 55,000 for D1, Mr 62,000 for D2, and Mr 65,000 for D3, which were eliminated by 100 mm dithiothreitol at 100 C. Anti-FLAG antibody immunodepleted 10% of D1 and 38% of D2 activity from lysates of cells coexpressing inactive FLAG-tagged Ala mutants and the respective wt enzymes (D1 or D2) but failed to immunodeplete wtD3 activity. D1 or D2 activities were present in these respective pellets. We conclude 1) that overexpressed selenodeiodinases can homodimerize probably through disulfide bridges; and 2) at least for D1 and D2, monomeric forms are catalytically active, demonstrating that only one wt monomer partner is required for catalytic activity of these two deiodinases.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2875-2875
Author(s):  
Simone Morera ◽  
Laurent Chiarelli ◽  
Stefano Rovida ◽  
Paola Bianchi ◽  
Elisa Fermo ◽  
...  

Abstract Phosphoglycerate kinase (PGK) is a key glycolytic enzyme that catalyzes the reversible transfer of a phoshoryl-group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP forming 3-phosphoglycerate (3-PG) and ATP. PGK is a typical two-domain hinge-bending enzyme, with a highly conserved structure. The N-terminal domain binds 1,3-BPG/3-PG, whereas the C-terminal domain binds Mg-ADP/Mg-ATP.Humans have two PGK isozymes, PGK1 and PGK2, where PGK1 is an ubiquitous enzyme that is expressed in all somatic cells and PGK2 is a testis-specific enzyme. The PGK1 gene is located on the X-chromosome q-13.1, contains 11 exons and encodes a protein of 416 amino acids. Mutations of the PGK1 gene result in an enzyme deficiency that is for the most clinically characterized by mild-to severe hemolytic anemia and various defects in the central nervous system. To date, 19 different mutations with worldwide distribution have been reported. No correlation between the residual PGK activity and the severity of the clinical manifestations have been documented so far. To analyze the mutations at protein level and possibly to correlate the genotype to clinical phenotype, we started with the molecular characterization of the wild-type PGK1 enzyme and three mutants (I47N, D164 and S320N) obtained from E.coli as recombinant proteins. The corresponding mutations, i.e., c.140T>A, c.491A>T and c.959G>A, have been identified in patients with PGK deficiency and affected by severe hemolytic anemia and progressive mental retardation. The cDNA encoding the PGK1 was prepared starting from a blood sample of a healthy donor, with normal PGK1 activity. Site-directed mutagenesis was used to introduce the desired mutations into the PGK1 cDNA. The wild type enzyme was expressed to its maximum level (about 80–100 mg of enzyme per liter of culture) after 5 hours of induction with 0.5 mM IPTG at 37 °C. For mutant enzymes the induction temperature was lowered to 25°C. All recombinant enzymes were purified to homogeneity after a single chromatographic step on DEAE Sepharose column. The wild-type enzyme was crystallized in both free form or complexed with 3-PG. The corresponding structures were solved to high resolution (1.8 and 1.6 A, respectively) and compared. Essentially, binding 3-PG caused a 6° rotation of the N-domain in respect to the C-domain. The recombinant enzyme exhibited kinetic properties similar to those of the authentic enzyme, displaying vs 3-PG and ATP alike specific activities (about 1000 U/mg) and alike Km values (about 1mM). I47N and S320N mutant enzymes showed kcat values 3-fold lower than the wild-type enzyme. The D164V was characterized by a Km value vs 3-PG 15 times higher than that of the other enzymes studied and a catalytic efficiency 70 times lower. Finally, all mutant enzymes turned out to be highly heat unstable with respect to the wildtype enzyme, losing half of their activity after approximately 10 minutes of incubation at 37 °C. At higher temperatures, the wild-type enzyme was protected from heat inactivation by Mg-ATP or 3-PG. On the contrary, no one mutant was protect by Mg-ATP and the D164V and S320N mutants were not even protected by 3-PG. Therefore, these preliminary studies indicate that all mutations target amino acid residues located in positions primarily important for preserving the protein stability during the red cell life span.


2021 ◽  
Vol 9 ◽  
Author(s):  
Juliana C. Ferreira ◽  
Samar Fadl ◽  
Adrian J. Villanueva ◽  
Wael M. Rabeh

Coronaviruses are responsible for multiple pandemics and millions of deaths globally, including the current pandemic of coronavirus disease 2019 (COVID-19). Development of antivirals against coronaviruses, including the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) responsible for COVID-19, is essential for containing the current and future coronavirus outbreaks. SARS-CoV-2 proteases represent important targets for the development of antivirals because of their role in the processing of viral polyproteins. 3-Chymotrypsin-like protease (3CLpro) is one such protease. The cleavage of SARS-CoV-2 polyproteins by 3CLpro is facilitated by a Cys145–His41 catalytic dyad. We here characterized the catalytic roles of the cysteine–histidine pair for improved understanding of the 3CLpro reaction mechanism, to inform the development of more effective antivirals against Sars-CoV-2. The catalytic dyad residues were substituted by site-directed mutagenesis. All substitutions tested (H41A, H41D, H41E, C145A, and C145S) resulted in a complete inactivation of 3CLpro, even when amino acids with a similar catalytic function to that of the original residues were used. The integrity of the structural fold of enzyme variants was investigated by circular dichroism spectroscopy to test if the catalytic inactivation of 3CLpro was caused by gross changes in the enzyme secondary structure. C145A, but not the other substitutions, shifted the oligomeric state of the enzyme from dimeric to a higher oligomeric state. Finally, the thermodynamic stability of 3CLpro H41A, H41D, and C145S variants was reduced relative the wild-type enzyme, with a similar stability of the H41E and C145A variants. Collectively, the above observations confirm the roles of His41 and Cys145 in the catalytic activity and the overall conformational fold of 3CLpro SARS-CoV-2. We conclude that the cysteine–histidine pair should be targeted for inhibition of 3CLpro and development of antiviral against COVID-19 and coronaviruses.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2974-2982 ◽  
Author(s):  
CE Naylor ◽  
P Rowland ◽  
AK Basak ◽  
S Gover ◽  
PJ Mason ◽  
...  

Human glucose 6-phosphate dehydrogenase (G6PD) has a particularly large number of variants resulting from point mutations; some 60 mutations have been sequenced to date. Many variants, some polymorphic, are associated with enzyme deficiency. Certain variants have severe clinical manifestations; for such variants, the mutant enzyme almost always displays a reduced thermal stability. A homology model of human G6PD has been built, based on the three-dimensional structure of the enzyme from Leuconostoc mesenteroides. The model has suggested structural reasons for the diminished enzyme stability and hence for deficiency. It has shown that a cluster of mutations in exon 10, resulting in severe clinical symptoms, occurs at or near the dimer interface of the enzyme, that the eight-residue deletion in the variant Nara is at a surface loop, and that the two mutations in the A- variant are close together in the three-dimensional structure.


2012 ◽  
Vol 32 (3) ◽  
pp. 305-313 ◽  
Author(s):  
Hyo Jin Kang ◽  
Young-mi Lee ◽  
Myeong Seon Jeong ◽  
Moonil Kim ◽  
Kwang-Hee Bae ◽  
...  

Various apoptotic signals can activate caspases 3 and 7 by triggering the L2 loop cleavage of their proenzymes. These two enzymes have highly similar structures and functions, and serve as apoptotic executioners. The structures of caspase 7 and procaspase 7 differ significantly in the conformation of the loops constituting the active site, indicating that the enzyme undergoes a large structural change during activation. To define the role of the leucine residue on the L2 loop, which shows the largest movement during enzyme activation but has not yet been studied, Leu168 of caspase 3 and Leu191 of caspase 7 were mutated. Kinetic analysis indicated that the mutation of the leucine residues sometimes improved the Km but also greatly decreased the kcat, resulting in an overall decrease in enzyme activity. The tryptophan fluorescence change at excitation/emission=280/350 nm upon L2–L2′ loop cleavage was found to be higher in catalytically active mutants, including the corresponding wild-type caspase, than in the inactive mutants. The crystal structures of the caspase 3 mutants were solved and compared with that of wild-type. Significant alterations in the conformations of the L1 and L4 loops were found. These results indicate that the leucine residue on the L2 loop has an important role in maintaining the catalytic activity of caspases 3 and 7.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Katarzyna Hupert-Kocurek ◽  
Danuta Wojcieszyńska ◽  
Urszula Guzik

Catechol 2,3-dioxygenases (C23Os, E.C.1.13.12.2) are two domain enzymes that catalyze degradation of monoaromatic hydrocarbons. The catalytically active C-domain of all known C23Os comprises ferrous ion ligands as well as residues forming active site pocket. The aim of this work was to examine and discuss the effect of nonsense mutation at position 289 on the activity of catechol 2,3-dioxygenase fromPlanococcusstrain. Although the mutant C23O showed the same optimal temperature for activity as the wild-type protein (35°C), it exhibited activity slightly more tolerant to alkaline pH. Mutant enzyme exhibited also higher affinity to catechol as a substrate. ItsKm(66.17 µM) was approximately 30% lower than that of wild-type enzyme. Interestingly, removal of the C-terminal residues resulted in 1.5- to 1.8-fold(P<0.05)increase in the activity of C23OB61 against 4-methylcatechol and 4-chlorocatechol, respectively, while towards catechol the activity of the protein dropped to about 80% of that of the wild-type enzyme. The results obtained may facilitate the engineering of the C23O for application in the bioremediation of polluted areas.


1995 ◽  
Vol 308 (2) ◽  
pp. 547-550 ◽  
Author(s):  
J S Kim ◽  
J Soucek ◽  
J Matousek ◽  
R T Raines

Bovine seminal ribonuclease (BS-RNase) is a homologue of RNase A with special biological properties, including potent immunosuppressive activity. A mutant BS-RNase was created in which His-119, the active-site residue that acts as a general acid during catalysis, was changed to an aspartic acid. H119D BS-RNase formed a dimer with quaternary structure similar to that of the wild-type enzyme but with values of kcat. and kcat./Km for the cleavage of UpA [uridylyl(3′-->5′)adenosine] that were 4 x 10(3)-fold lower. The mutant protein also demonstrated dramatically decreased immunosuppressive, anti-tumour, aspermatogenic, and embryotoxic activities. The catalytic activity of BS-RNase is therefore necessary for its special biological properties.


2018 ◽  
Vol 116 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Garima Jindal ◽  
Katerina Slanska ◽  
Veselin Kolev ◽  
Jiri Damborsky ◽  
Zbynek Prokop ◽  
...  

Rational enzyme design presents a major challenge that has not been overcome by computational approaches. One of the key challenges is the difficulty in assessing the magnitude of the maximum possible catalytic activity. In an attempt to overcome this challenge, we introduce a strategy that takes an active enzyme (assuming that its activity is close to the maximum possible activity), design mutations that reduce the catalytic activity, and then try to restore that catalysis by mutating other residues. Here we take as a test case the enzyme haloalkane dehalogenase (DhlA), with a 1,2-dichloroethane substrate. We start by demonstrating our ability to reproduce the results of single mutations. Next, we design mutations that reduce the enzyme activity and finally design double mutations that are aimed at restoring the activity. Using the computational predictions as a guide, we conduct an experimental study that confirms our prediction in one case and leads to inconclusive results in another case with 1,2-dichloroethane as substrate. Interestingly, one of our predicted double mutants catalyzes dehalogenation of 1,2-dibromoethane more efficiently than the wild-type enzyme.


Sign in / Sign up

Export Citation Format

Share Document