scholarly journals Biased TCR gene usage in citrullinated Tenascin C specific T-cells in rheumatoid arthritis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ravi K. Sharma ◽  
Sanjay V. Boddul ◽  
Niyaz Yoosuf ◽  
Sara Turcinov ◽  
Anatoly Dubnovitsky ◽  
...  

AbstractWe aimed to search for common features in the autoreactive T cell receptor (TCR) repertoire in patients with rheumatoid arthritis (RA), focusing on the newly identified candidate antigen citrullinated Tenascin C (cit-TNC). Mononuclear cells from peripheral blood or synovial fluid of eight RA-patients positive for the RA-associated HLA-DRB1*04:01 allele were in-vitro cultured with recently identified citrullinated peptides from Tenascin C. Antigen-specific T cells were isolated using peptide-HLA tetramer staining and subsequently single-cell sequenced for paired alpha/beta TCR analyses by bioinformatic tools. TCRs were re-expressed for further studies of antigen-specificity and T cell responses. Autoreactive T cell lines could be grown out from both peripheral blood and synovial fluid. We demonstrate the feasibility of retrieving true autoreactive TCR sequences by validating antigen-specificity in T cell lines with re-expressed TCRs. One of the Tenascin C peptides, cit-TNC22, gave the most robust T cell responses including biased TCR gene usage patterns. The shared TCR-beta chain signature among the cit-TNC22-specific TCRs was evident in blood and synovial fluid of different patients. The identification of common elements in the autoreactive TCR repertoire gives promise to the possibility of both immune monitoring of the autoimmune components in RA and of future antigen- or TCR-targeted specific intervention in subsets of patients.

2021 ◽  
Author(s):  
Ravi Sharma ◽  
Sanjay V. Boddul ◽  
Niyaz Yoosuf ◽  
Sara Turcinov ◽  
Anatoly Dubnovitsky ◽  
...  

Abstract Objectives To search for common features in the autoreactive T cell receptor (TCR)-repertoire in patients with rheumatoid arthritis (RA), focusing on the newly identified candidate antigen citrullinated Tenascin C (cit-TNC). Methods Mononuclear cells from peripheral blood or synovial fluid of eight RA-patients positive for the RA-associated HLA-DRB1*04:01 allele were in-vitro cultured with recently identified citrullinated peptides from Tenascin C. Antigen-specific T cells were isolated using peptide-HLA tetramer staining and subsequently single-cell sequenced for paired alpha/beta TCR analyses by bioinformatic tools. TCRs were re-expressed for further studies of antigen-specificity and T cell responses. Results Autoreactive T cell lines could be grown out from both peripheral blood and synovial fluid. We demonstrate the feasibility of retrieving true autoreactive TCR sequences by validating antigen-specificity in T cell lines with re-expressed TCRs. One of the Tenascin C peptides, cit-TNC22, gave the most robust T cell responses including biased TCR gene usage patterns. The shared TCR-beta chain signature among the citTNC22-specific TCRs was evident in blood and synovial fluid of different patients. Conclusion The identification of common elements in the autoreactive TCR repertoire gives promise to the possibility of both immune monitoring of the autoimmune components in RA and of future antigen- or TCR-targeted specific intervention in subsets of patients.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 235.1-236
Author(s):  
R. Kumar ◽  
N. Yoosuf ◽  
C. Gerstner ◽  
S. Turcinov ◽  
K. Chemin ◽  
...  

Background:Autoimmunity to citrullinated autoantigens forms a critical component of disease pathogenesis in rheumatoid arthritis (RA). Presence of anti-citrullinated protein antibodies (ACPAs) in patients has high diagnostic value. Recently, several citrullinated antigen specific CD4+T cells have been described. However, detailed studies of their T-cell receptor usage and in-vivo profile suffer from the disadvantage that these cells are present at very low frequencies. In this context, we here present a pipeline for TCR repertoire analysis of antigen-specific CD4+T cells from RA patients, including both citrulline and influenza (control) specificities using in-vitro peptide challenge induced-cell expansion.Objectives:To enable studies of the T cell repertoire of citrullinated antigen-specific CD4+T cells in rheumatoid arthritisMethods:Peripheral blood mononuclear cells (PBMCs) (n=7) and synovial fluid mononuclear cells (SFMCs) (n=5) from HLA-DR*0401-postive RA patients were cultured in the presence of citrullinated Tenascin C peptide cocktails or influenza peptides (positive control). Citrulline reactive cells were further supplemented with recombinant human IL-15 and IL-7 on day 2. All cultures were replenished with fresh medium on day 6 and rIL-2 was added every 2 days from then. Assessment of proportion of peptide-HLA-tetramer positive cells was performed using flow cytometry whereby individual antigen-specific CD4+T cells were sorted into 96-well plates containing cell lysis buffer, followed by PCR-based alpha/beta TCR sequencing. TCR sequencing data was demultiplexed and aligned for TCR gene usage using MiXCR. Some tetramer positive cells were sorted into complete medium containing human IL-2 and PHA for expansion of antigen-specific cells. Cells were supplemented with irradiated allogenic PBMCs (30 times number of antigen specific cells). Clones of antigen specific CD4+T cells were further subjected to tetramer staining to confirm expansion of cells.Results:As evidenced by increase in frequency of tetramer positive CD4+T cells, in vitro peptide stimulation resulted in expansion of both influenza specific (Fig. 1a) and citrullinated antigen specific (Fig. 1b) CD4+T cells. Polyclonal in-vitro expansion of tenascin C tetramer positive sorted cells followed by tetramer staining further confirmed antigen specificity and enrichment for antigen specific CD4+T cells after polyclonal stimulation (Fig.1c). TCR repertoire analysis in PB and SF dataset from the first patient showed clonal expansion of influenza specific cells in both sites. Synovial fluid had more diversity of expanding clones as compared to paired PB, with few expanded clones being shared among SF and PB. We observed a more diverse TCR repertoire in citrulline specific CD4+T cells. We also observed sharing of TCR alpha chains among different citrulline specific CD4+T cell clones.Fig. 1In-vitroexpansion of antigen specific CD4+T cells:Conclusion:This method provides a highly suitable approach for investigating TCR specificities of antigen specific CD4+T cells under conditions of low cell yields. Building on this dataset will allow us to assess specific features of TCR usage of autoreactive T cells in RA.PBMCs were cultured in presence of (a) influenza (HA, MP54) and (b) citrullinated tenascin peptides. The proportion of antigen specific CD4+T cells was assessed using HLA-class II tetramer staining. We observed an increase in frequency of (a) Infleunza specific cells (red dots in upper left and lower right quadrants) and (b) citrullinated tenascin C specific cells (red dots in lower right quadrant), at day 13 post culture as compared to day 3. (c) Sorting of citrullinated tenascin specific CD4+T cells, followed by PHA expansion resulted in visible increase in proportion of citrullinated tenascin specific CD4+T cells.Disclosure of Interests:Ravi kumar: None declared, Niyaz Yoosuf: None declared, Christina Gerstner: None declared, Sara Turcinov: None declared, Karine Chemin: None declared, Vivianne Malmström Grant/research support from: VM has had research grants from Janssen Pharmaceutica


The Lancet ◽  
2014 ◽  
Vol 383 ◽  
pp. S22 ◽  
Author(s):  
Aamir Aslam ◽  
Jackie Nam ◽  
Laura Hunt ◽  
Chadi Rakieh ◽  
Ann Morgan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina Ceglia ◽  
Erin J. Kelley ◽  
Annalee S. Boyle ◽  
Sandra Zurawski ◽  
Heather L. Mead ◽  
...  

Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire provides a global view that is limited only in terms of theoretical sensitivity due to the depth of available sampling; however, the assignment of antigen specificities within TCR repertoires has become a bottleneck. This study combines antigen-driven expansion, deep TCR sequencing, and a novel analysis framework to show that homologous ‘Clusters of Expanded TCRs (CETs)’ can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse uncultured repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.


1993 ◽  
Vol 36 (9) ◽  
pp. 1234-1243 ◽  
Author(s):  
Barbara M. Bröker ◽  
Ulf Korthäuer ◽  
Peter Heppt ◽  
Gerd Weseloh ◽  
RÜDiger De La Camp ◽  
...  

2009 ◽  
Vol 69 (01) ◽  
pp. 255-262 ◽  
Author(s):  
H de Jong ◽  
S E Berlo ◽  
P Hombrink ◽  
H G Otten ◽  
W van Eden ◽  
...  

Objectives:To explore potential T-cell epitopes of the core protein of human cartilage proteoglycan aggrecan (PG) in patients with rheumatoid arthritis (RA) or osteoarthritis.Methods:Peptide-specific T-cell proliferation and cytokine/chemokine production in response to PG-specific peptides were measured in RA and osteoarthritis patients and in healthy controls.Results:Peptides representing amino acid regions 16–39 and 263–282 of PG were most frequently recognised by T cells in a subset of patients with RA or osteoarthritis. Peripheral blood mononuclear cells from these PG-reactive RA and osteoarthritis patients showed increased production of proinflammatory cytokines/chemokines in response to PG peptide stimulation. As PG p263–282 was found to show high sequence homology with Yersinia Yop protein, the corresponding bacterial (Yersinia) peptide was also tested. Remarkably, RA and osteoarthritis patients responding to the Yersinia peptide also responded to p263–282 of PG suggesting a possibility of molecular mimicry in these patients.Conclusions:These results indicate that PG-specific peptides, located in the G1 domain of PG, can induce (auto)antigenic T-cell responses in RA and osteoarthritis patients. These peptides might thus be involved in the immune pathogenesis and/or cartilage degradation in RA and osteoarthritis.


2021 ◽  
Author(s):  
Valentina Ceglia ◽  
Erin J Kelley ◽  
Annalee S Boyle ◽  
Yves Levy ◽  
Gerard Zurawski ◽  
...  

Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire offers a global view whose theoretical sensitivity is limited only by the depth of available sampling. However, assignment of antigen specificities within TCR repertoires has become a bottleneck. Here, we combine antigen-driven expansion, deep TCR sequencing and a novel analysis framework to show that homologous "Clusters of Expanded TCRs (CETs)" can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse unexpanded repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.


Sign in / Sign up

Export Citation Format

Share Document