scholarly journals Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhammad H. Sultan ◽  
Sivakumar S. Moni ◽  
Osama A. Madkhali ◽  
Mohammed Ali Bakkari ◽  
Saeed Alshahrani ◽  
...  

AbstractThe present study was carried out to develop cisplatin-loaded chitosan nanoparticles (CCNP) and cisplatin-loaded chitosan nanoparticle surface linked to rituximab (mAbCCNP) as targeted delivery formulations. The two formulations (CCNP and mAbCCNP) exhibited significant physicochemical properties. The zetapotential (ZP) values of CCNP and mAbCCNP were 30.50 ± 5.64 and 26.90 ± 9.09 mV, respectively; while their particle sizes were 308.10 ± 1.10 and 349.40 ± 3.20 z.d.nm, respectively. The poly dispersity index (PDI) of CCNP was 0.257 ± 0.030 (66.6% PDI), while that of mAbCCNP was 0.444 ± 0.007 (57.60% PDI). Differential scanning calorimetry (DSC) revealed that CCNP had endothermic peaks at temperatures ranging from 135.50 to 157.69 °C. A sharp exothermic peak was observed at 95.79 °C, and an endothermic peak was observed at 166.60 °C. The XRD study on CCNP and mAbCCNP revealed distinct peaks at 2θ. Four peaks at 35.38°, 37.47°, 49.29°, and 59.94° corresponded to CCNP, while three distinct peaks at 36.6°, 49.12°, and 55.08° corresponded to mAbCCNP. The in vitro release of cisplatin from nanoparticles followed zero order kinetics in both CCNP and mAbCCNP. The profile for CCNP showed 43.80% release of cisplatin in 6 h (R2 = 0.9322), indicating linearity of release with minimal deviation. However, the release profile of mAbCCNP showed 22.52% release in 4 h (R2 = 0.9416), indicating linearity with sustained release. In vitro cytotoxicity studies on MCF-7 ATCC human breast cancer cell line showed that CCNP exerted good cytotoxicity, with IC50 of 4.085 ± 0.065 µg/mL. However, mAbCCNP did not elicit any cytotoxic effect. At a dose of 4.00 µg/mL cisplatin induced early apoptosis and late apoptosis, chromatin condensation, while it produced secondary necrosis at a dose of 8.00 µg/mL. Potential delivery system for cisplatin CCNP and mAbCCNP were successfully formulated. The results indicated that CCNP was a more successful formulation than mAbCCNP due to lack of specificity of rituximab against MCF-7 ATCC human breast cancer cells.

2005 ◽  
Vol 22 (2) ◽  
pp. 129-138 ◽  
Author(s):  
M. Waheed Roomi ◽  
Vadim Ivanov ◽  
Tatiana Kalinovsky ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath

2010 ◽  
Vol 5 (12) ◽  
pp. 1934578X1000501
Author(s):  
Jiraporn Saekoo ◽  
Potchanapond Graidist ◽  
Wilairat Leeanansaksiri ◽  
Chavaboon Dechsukum ◽  
Arunporn Itharat

Dioscorealide B is a pharmacologically active compound from the rhizome of the Thai medicinal plant Dioscorea membranacea. Here, we demonstrated that in vitro treatment of dioscorealide B resulted in a cytotoxic effect on MCF-7 human breast cancer cells (IC50 = 2.82 μM). To determine whether this compound induces apoptosis in MCF-7, the Annexin V assay was performed. The data showed that the number of apoptotic cells were increased 7–12 folds over that of the control cells after treatment with various concentrations of dioscorealide B (3, 6 and 12 μM) for 24 hours. Dioscorealide B-induced apoptosis was associated with modulation of the multidomain Bcl-2 family members Bax, Bak and Bcl-2. After treatment with 3 μM dioscorealide B, acceleration of the level of proapoptotic proteins Bax and Bak were observed at 6 hours and 12 hours, respectively, while the decrease in the expression of antiapoptotic protein Bcl-2 was observed 3 hours after the treatment. These effects of dioscorealide B might result in the activation of caspase-8, -9 and -7, which lead to apoptosis in MCF-7 cells. Taken together, the results of this study provide evidence that dioscorealide B possesses an antitumor property against human breast cancer cells and thus provide the molecular basis for the further development of dioscorealide B as a novel chemotherapeutic agent for breast cancer treatment.


1993 ◽  
Vol 67 (2) ◽  
pp. 232-236 ◽  
Author(s):  
JA Foekens ◽  
AM Sieuwerts ◽  
EMJ Stuurman-Smeets ◽  
HA Peters ◽  
JGM Klijn

2019 ◽  
Vol 61 ◽  
pp. 104607 ◽  
Author(s):  
Xiaomeng Xu ◽  
Yingying Feng ◽  
Xiaoyu Chen ◽  
Qinjian Wang ◽  
Ting Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document