scholarly journals Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Naila Shaheen ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe present investigation aims to deliberate the magnetohydrodynamic (MHD) dusty Casson nanofluid with variable heat source/sink and modified Fourier’s and Fick’s laws over a stretching cylinder. The novelty of the flow model is enhanced with additional effects of the Newtonian heating, activation energy, and an exothermic chemical reaction. In an exothermic chemical reaction, the energy of the reactants is higher than the end products. The solution to the formulated problem is attained numerically by employing the MATLAB software function bvp4c. The behavior of flow parameters versus involved profiles is discussed graphically at length. For large values of momentum dust particles, the velocity field for the fluid flow declines, whereas an opposite trend is perceived for the dust phase. An escalation is noticed for the Newtonian heating in the temperature profile for both the fluid and dust-particle phase. A comparison is also added with an already published work to check the validity of the envisioned problem.

2017 ◽  
Vol 1 (2) ◽  
pp. 104 ◽  
Author(s):  
Ajaz Ahmad Dar

<p><em>This article deals with the effect of an inclined magnetic field with heat source/sink on the flow of nanofluids in a tapered asymmetric porous channel. Effect of chemical reaction has been taken into account. The blood is considered as an incompressible electrically conducting viscous fluid. The assumption of low Reynolds number and long wave length approximations has been adopted. Exact solutions for dimensionless axial velocity, concentration and temperature profile are obtained analytically. The obtained results are displayed and discussed in detail with the help of graphs for the variation of different emerging flow parameters.</em></p>


2020 ◽  
Vol 17 (2) ◽  
pp. 143-164 ◽  
Author(s):  
B. Shankar Goud ◽  
Y. Dharmendar Reddy ◽  
V. Srinivasa Rao

The present study explores the thermal and Joule heating effect of Casson nanofluid flow with chemical reaction over an inclined porous stretching surface. The results of heat source/sink, viscous dissipation, and suction are regarded. The new physical governing equations of partial differential flow equations are converted into nonlinear ordinary differential equations and are numerically resolved employing the implicit finite difference technique. The influence on velocity, temperature, and concentration fields of many flow variables are addressed. The numerical and graphical findings are defined for the numerous related attentiveness flow parameters. The empirical data reported are compared with the published outcomes.


2020 ◽  
Vol 32 (11) ◽  
pp. 113602
Author(s):  
U. S. Mahabaleshwar ◽  
K. R. Nagaraju ◽  
P. N. Vinay Kumar ◽  
Martin Ndi Azese

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Faisal Javed ◽  
Mohammed Jameel ◽  
Muhammad Ijaz Khan ◽  
Sumaira Qayyum ◽  
Niaz B. Khan ◽  
...  

Purpose This study aims to focus on second grade fluid flow over a rotating disk in the presence of chemical reaction. Uniform magnetic field is also taken into account. Because of the smaller magnetic Reynolds number, induced magnetic field is negligible. Heat equation is constructed by considering heat source/sink. Design/methodology/approach Suitable variables are used to transform nonlinear partial differential equations to ordinary ones. Convergent series solutions are attained by applying homotopy analysis method. Findings Trends of different parameters on concentration, velocity and temperature are shown graphically. Skin friction coefficient and local Nusselt number are calculated and investigated under the effect of elaborated parameters. An elevation in the value of magnetic field parameter causes collapse in the velocity distributions. Velocity distribution in increasing function of viscoelastic parameter. Temperature and concentration profiles are decreasing functions of viscoelastic parameter. Concentration distribution reduces by increasing the chemical reaction parameter. There is more surface drag force for larger M, while opposite behavior is noted for β. Originality/value To the best of the authors’ knowledge, such consideration is yet to be published in the literature.


2017 ◽  
Vol 11 ◽  
pp. 22-32 ◽  
Author(s):  
K. Ganesh Kumar ◽  
Bijjanal Jayanna Gireesha ◽  
B.C. Prasannakumara ◽  
Oluwole Daniel Makinde

This paper explore the Marangoni boundary layer flow in a Casson nano liquid over a stretching sheet. The effect of chemical reaction and uniform heat source/sink are taken into the account. The standard nonlinear system is resolved numerically via Runge-Kutta based shooting scheme. Role of substantial parameters on flow fields as well as on heat and mass transportation rates are determined and conferred in depth through graphs.From the investigation it reveals that, the Marangoni number plays a connecting role between the velocity and temperature gradients on the boundary surface. Further,the higher values of Lewis number and chemical reaction parameter reduces the solutal thermal boundary layer thickness decreases.


Sign in / Sign up

Export Citation Format

Share Document