scholarly journals Analysis of Newtonian heating and higher-order chemical reaction on a Maxwell nanofluid in a rotating frame with gyrotactic microorganisms and variable heat source/sink

Author(s):  
Yu-Ming Chu ◽  
Muhammad Ramzan ◽  
Naila Shaheen ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Naila Shaheen ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe present investigation aims to deliberate the magnetohydrodynamic (MHD) dusty Casson nanofluid with variable heat source/sink and modified Fourier’s and Fick’s laws over a stretching cylinder. The novelty of the flow model is enhanced with additional effects of the Newtonian heating, activation energy, and an exothermic chemical reaction. In an exothermic chemical reaction, the energy of the reactants is higher than the end products. The solution to the formulated problem is attained numerically by employing the MATLAB software function bvp4c. The behavior of flow parameters versus involved profiles is discussed graphically at length. For large values of momentum dust particles, the velocity field for the fluid flow declines, whereas an opposite trend is perceived for the dust phase. An escalation is noticed for the Newtonian heating in the temperature profile for both the fluid and dust-particle phase. A comparison is also added with an already published work to check the validity of the envisioned problem.


Author(s):  
A. Jasmine Benazir ◽  
R. Sivaraj ◽  
Oluwole Daniel Makinde

The present study focuses the effects of double dispersion, non-uniform heat source/sink and higher order chemical reaction on unsteady, free convective, MHD Casson fluid flow over a vertical cone and flat plate saturated with porous medium. The extensively validated and unconditionally stable numerical solutions are obtained for the governing equations of two dimensional boundary layer flow by using the finite difference scheme of Crank-Nicolson type. The behavior of velocity, temperature and concentration distributions for various controlling parameters of this problem are graphically illustrated and discussed in detail. The average skin friction, Nusselt number and Sherwood number for sundry parameters are presented in tables. Results indicate that an increase in Casson fluid parameter is found to decelerate fluid flow by increasing the plastic dynamic viscosity whereas it enhances the shear stress in the flow regime. The temperature-dependent heat source/sink plays a vital role on controlling the heat transfer however the surface-dependent heat source/sink also has notable influence on the heat transfer characteristics. It is to be noted that higher order chemical reaction has the tendency to dilute the influence of chemical reaction parameter on the species concentration.


2021 ◽  
Author(s):  
Tanveer Sajid ◽  
Wasim Jamshed ◽  
Faisal Shahzad ◽  
Mohamed R. Eid ◽  
Hashim M. Alshehri ◽  
...  

2015 ◽  
Vol 12 (2) ◽  
pp. 125-136 ◽  
Author(s):  
D. Mythili ◽  
R. Sivaraj ◽  
M. M. Rashidi ◽  
Z. Yang

The present investigation deals with the study of unsteady, free convective Casson fluid flow over a vertical cone saturated with porous medium in the presence of non-uniform heat source/sink, high order chemical reaction and cross diffusion effects. The numerical computation for the governing equations has been performed using an implicit finite difference method of Crank-Nicolson type. The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically and the physical aspects are discussed in detail. Results indicate that temperature dependent heat source/sink plays a vital role on controlling the heat transfer however the surface-dependent heat source/sink also has notable influence on the heat transfer characteristics. It is to be noted that high order chemical reaction has the tendency to dilute the influence of chemical reaction parameter on the species concentration.


Author(s):  
Vinodkumar Reddy Mulinti ◽  
P Lakshminarayana

Abstract In this paper, we investigated the heat and mass transfer analysis of an MHD convection flow of Maxwell nanofluid with Cattaneo-Christov heat flux model along with a porous stretching sheet. The effects of thermal radiation, viscous dissipation, suction/injection and higher-order chemical reaction are taken into consideration. By using similarity transformations the governing equations of the study are reduced into a system of ordinary differential equations and solved numerically by using the BVP5C MATLAB package. The effects of dimensionless parameters on the present study are deliberated with the aid of graphs and tables. It is found that an increase in thermal Grashof number, thermal radiation and thermal relaxation time parameter drops the temperature field. The heat transfer rate is declined with enhancing heat source, Brownian motion and thermophoresis parameters. Also, observed that the concentration field reduces with the rising value of chemical reaction. The numerically computed values of Nusselt number and Sherwood number are validated with existing literature and found a good agreement.


Sign in / Sign up

Export Citation Format

Share Document