scholarly journals Spotted hyena optimizer algorithm for capacitor allocation in radial distribution system with distributed generation and microgrid operation considering different load types

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amirreza Naderipour ◽  
Zulkurnain Abdul-Malek ◽  
Mohammad Hajivand ◽  
Zahra Mirzaei Seifabad ◽  
Mohammad Ali Farsi ◽  
...  

AbstractIn this paper, the optimal allocation of constant and switchable capacitors is presented simultaneously in two operation modes, grid-connected and islanded, for a microgrid. Different load levels are considered by employing non-dispatchable distributed generations. The objective function includes minimising the energy losses cost, the cost of peak power losses, and the cost of the capacitor. The optimization problem is solved using the spotted hyena optimizer (SHO) algorithm to determine the optimal size and location of capacitors, considering different loading levels and the two operation modes. In this study, a three-level load and various types of loads, including constant power, constant current, and constant impedance are considered. The proposed method is implemented on a 24-bus radial distribution network. To evaluate the performance of the SHO, the results are compared with GWO and the genetic algorithm (GA). The simulation results demonstrate the superior performance of the SHO in reducing the cost of losses and improving the voltage profile during injection and non-injection of reactive power by distributed generations in two operation modes. The total cost and net saving values for DGs only with the capability of active power injection is achieved 105,780 $ and 100,560.54 $, respectively and for DGs with the capability of active and reactive power injection is obtained 89,568 $ and 76,850.46 $, respectively using the SHO. The proposed method has achieved more annual net savings due to the lower cost of losses than other optimization methods.

Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Tingting He ◽  
Dylan Dah-Chuan Lu ◽  
Mingli Wu ◽  
Qinyao Yang ◽  
Teng Li ◽  
...  

This paper presents the four-quadrant operation modes of bidirectional chargers for electric vehicles (EVs) framed in smart car parks. A cascaded model predictive control (MPC) scheme for the bidirectional two-stage off-board chargers is proposed. The controller is constructed in two stages. The model predictive direct power control for the grid side is applied to track the active/reactive power references. The model predictive direct current control is proposed to achieve constant current charging/discharging for the EV load side. With this MPC strategy, EV chargers are able to transmit the active and reactive powers between the EV batteries and the power grid. Apart from exchanging the active power, the vehicle-for-grid (V4G) mode is proposed, where the chargers are used to deliver the reactive power to support the grid, simultaneously combined with grid-to-vehicle or vehicle-to-grid operation modes. In the V4G mode, the EV battery functions as the static var compensator. According to the simulation results, the system can operate effectively in the full control regions of the active and reactive power (PQ) plane under the aforementioned operation modes. Fast dynamic response and great steady-state system performances can be verified through various simulation and experimental results.


This paper keeps aim to integrate distributed generations(DGs) in radial distribution networks (RDNs) using ABC algorithm. The appropriate nodes of RDN is found out by the well-established loss sensitivity index. The optimal size of DGs are found out by using the ABC algorithm. The optimal integration of DGs not only reduces the loss but also increases the voltage profile and enhances the voltage stability index and hence improves the stability of the system. Here 33-node and 69-node RDNs are considered to implement the proposed method. The outcomes obtained by ABC algorithm have also been compared with that Firefly, PSO and GA algorithms


Author(s):  
Sarfaraz Nawaz ◽  
M.P. Sharma ◽  
Abhishek Gupta

<p>In this paper, a novel analytical technique is proposed for optimal allocation of shunt capacitor bank in radial distribution system. An objective function is formulated to determine the optimal size, number and location of capacitor bank for real &amp; reactive power loss reduction, voltage profile enhancement and annual cost saving. A new constant, Power Voltage Sensitivity Constant (PVSC), has been proposed here. The value of PVSC constant decides the candidate bus location and size. The achievability of the proposed method has been demonstrated on IEEE-69 bus and real distribution system of Jamawaramgarh, Jaipur city. The obtained results are compared with latest optimization techniques to show the effectiveness and robustness of the proposed technique.</p>


Sign in / Sign up

Export Citation Format

Share Document