scholarly journals Initiating Ullmann-like coupling of Br2Py by a semimetal surface

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinping Hu ◽  
Jinbang Hu ◽  
Hongbing Wang ◽  
Kongchao Shen ◽  
Huan Zhang ◽  
...  

AbstractIntensive efforts have been devoted to surface Ullmann-like coupling in recent years, due to its appealing success towards on-surface synthesis of tailor-made nanostructures. While attentions were mostly drawn on metallic substrates, however, Ullmann dehalogenation and coupling reaction on semimetal surfaces has been seldom addressed. Herein, we demonstrate the self-assembly of 2, 7-dibromopyrene (Br2Py) and the well controllable dehalogenation reaction of Br2Py on the Bi(111)–Ag substrate with a combination of scanning tunnelling microscopy (STM) and density functional theory calculations (DFT). By elaborately investigating the reaction path and formed organic nanostructures, it is revealed that the pristinely inert bismuth layer supported on the silver substrate can initiate Ullmann-like coupling in a desired manner by getting alloyed with Ag atoms underneath, while side products have not been discovered. By clarifying the pristine nature of Bi–Ag(111) and Ullmann-like reaction mechanisms, our report proposes an ideal template for thoroughly exploring dehalogenative coupling reaction mechanisms with atomic insights and on-surface synthesis of carbon-based architectures.

2020 ◽  
Vol 44 (5) ◽  
pp. 1254-1264
Author(s):  
Shaya AL-RAQA ◽  
İpek ÖMEROĞLU ◽  
Doğan ERBAHAR ◽  
Mahmut DURMUŞ

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, 1H-NMR, 13C-NMR, and 13C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6- dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and Fe3+. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.


2015 ◽  
Vol 1 (9) ◽  
pp. e1500656 ◽  
Author(s):  
Kun Wu ◽  
Zhiliang Huang ◽  
Xiaotian Qi ◽  
Yingzi Li ◽  
Guanghui Zhang ◽  
...  

Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation.


2016 ◽  
Vol 18 (36) ◽  
pp. 25010-25021 ◽  
Author(s):  
Chung Man Ip ◽  
Alessandro Troisi

Three reaction pathways for the photocatalytic reduction of carbon dioxide to methane are investigated with density functional theory calculations.


2017 ◽  
Vol 41 (12) ◽  
pp. 5007-5011
Author(s):  
Hujun Xie ◽  
Lihong Wang ◽  
Yang Li ◽  
Jian Kuang ◽  
Zunyi Wu ◽  
...  

Detailed reaction mechanisms for the reaction of a hafnium hydride complex with phenyl azides were investigated with the help of density functional theory calculations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yongchan Jeong ◽  
Hyo Won Kim ◽  
JiYeon Ku ◽  
Jungpil Seo

Abstract The homochirality of amino acids in living organisms is one of the great mysteries in the phenomena of life. To understand the chiral recognition of amino acids, we have used scanning tunnelling microscopy to investigate the self-assembly of molecules of the amino acid tryptophan (Trp) on Au(111). Earlier experiments showed only homochiral configurations in the self-assembly of amino acids, despite using a mixture of the two opposite enantiomers. In our study, we demonstrate that heterochiral configurations can be favored energetically when l- and d-Trp molecules are mixed to form self-assembly on the Au surface. Using density functional theory calculations, we show that the indole side chain strongly interacts with the Au surface, which reduces the system effectively to two-dimension, with chiral recognition disabled. Our study provides important insight into the recognition of the chirality of amino acid molecules in life.


2016 ◽  
Vol 18 (14) ◽  
pp. 9709-9714 ◽  
Author(s):  
Pei Zhao ◽  
Jing-Shuang Dang ◽  
Xiang Zhao

Both singly bonded monoadducts and cycloadducts were considered to investigate Bingel–Hirsch reaction on TiSc2N@C80 by density functional theory calculations.


Author(s):  
Zhaoyuan Yu ◽  
Shu-Juan Lin ◽  
Zhenyang Lin

The detailed reaction mechanisms of gold-catalyzed reactions of 2,1-benzisoxazoles with propiolates and ynamides have been investigated with the aid of density functional theory calculations. Our investigation focused on the different...


2017 ◽  
Vol 95 (3) ◽  
pp. 329-333 ◽  
Author(s):  
Kenta Kato ◽  
Yasutomo Segawa ◽  
Kenichiro Itami

The one-step π-extension of corannulene was achieved using a palladium-catalyzed C–H coupling reaction. The X-ray crystal structure and photophysical properties of the thus formed phenanthro[9,10-a]corannulene (1) were investigated, and the structural properties of 1 were examined by density functional theory calculations. In contrast to dibenzo[g,p]chrysene, the most stable structure of 1 was a butterfly-shaped structure, resulting from the bowl-shaped distortion of the corannulene moiety.


Sign in / Sign up

Export Citation Format

Share Document