scholarly journals Deep-sea turbulence evolution observed by multiple closely spaced instruments

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chu-Fang Yang ◽  
Wu-Cheng Chi ◽  
Hans van Haren

AbstractTurbulent mixing in the deep ocean is not well understood. The breaking of internal waves on sloped seafloor topography can generate deep-sea turbulence. However, it is difficult to measure turbulence comprehensively due to its multi-scale processes, in addition to flow–flow and flow–topography interactions. Dense, high-resolution spatiotemporal coverage of observations may help shed light on turbulence evolution. Here, we present turbulence observations from four broadband ocean bottom seismometers (OBSs) and a 200-m vertical thermistor string (T-string) in a footprint of 1 × 1 km to characterize turbulence induced by internal waves at a depth of 3000 m on a Pacific continental slope. Correlating the OBS-calculated time derivative of kinetic energy and the T-string-calculated turbulent kinetic energy dissipation rate, we propose that the OBS-detected signals were induced by near-seafloor turbulence. Strong disturbances were detected during a typhoon period, suggesting large-scale inertial waves breaking with upslope transport speeds of 0.2–0.5 m s−1. Disturbances were mostly excited on the downslope side of the array where the internal waves from the Pacific Ocean broke initially and the turbulence oscillated between < 1 km small-scale ridges. Such small-scale topography caused varying turbulence-induced signals due to localized waves breaking. Arrayed OBSs can provide complementary observations to characterize deep-sea turbulence.

2020 ◽  
Vol 32 (6) ◽  
pp. 200-212
Author(s):  
Stepan Alekseevich Elistratov ◽  
Kirill Alexandrovich Vatutin ◽  
Ilias Nailevich Sibgatullin ◽  
Evgeniy Valerievich Ermanyuk ◽  
Evgeny Aleksandrovich Mikhailov

Tidal forcing excites internal waves in the bulk of the ocean. Deep ocean is an example of a system with continuous stratification subject to large-scale periodic forcing. Owing to specific dispersion relation of internal waves, the domains bounded by sloping boundaries may support wave patterns with wave rays converging to closed trajectories (geometric attractors) as result of iterative focusing reflections. Previously the behavior of kinetic energy in wave attractors has been investigated in two-dimensional domain with comparable depth and length. As the geometric aspect ratio of the domain increases, the dynamic pattern of energy focusing may significantly evolve both in laminar and turbulent regimes. The present paper shows that the energy density in domains with large aspect ratio can significantly increase. In numerical simulations the input forcing has been introduced at global scale by prescribing small-amplitude deformations of the upper bound of the liquid domain. The evolution of internal wave motion in such system has been computed numerically for different values of the forcing amplitude. The behavior of the large-aspect-ratio system has been compared to the well-studied case of the system with depth-to-length ratio of order unity. A number of most typical situations has been analysed in terms of behavior of integral mechanical quantities such as total dissipation, mean kinetic energy and energy fluctuations in laminar and turbulent cases.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Hernández-León ◽  
R. Koppelmann ◽  
E. Fraile-Nuez ◽  
A. Bode ◽  
C. Mompeán ◽  
...  

AbstractThe biological pump transports organic carbon produced by photosynthesis to the meso- and bathypelagic zones, the latter removing carbon from exchanging with the atmosphere over centennial time scales. Organisms living in both zones are supported by a passive flux of particles, and carbon transported to the deep-sea through vertical zooplankton migrations. Here we report globally-coherent positive relationships between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary production (NPP). We do so based on a global assessment of available deep-sea zooplankton biomass data and large-scale estimates of average NPP. The relationships obtained imply that increased NPP leads to enhanced transference of organic carbon to the deep ocean. Estimated remineralization from respiration rates by deep-sea zooplankton requires a minimum supply of 0.44 Pg C y−1 transported into the bathypelagic ocean, comparable to the passive carbon sequestration. We suggest that the global coupling between NPP and bathypelagic zooplankton biomass must be also supported by an active transport mechanism associated to vertical zooplankton migration.


1995 ◽  
Vol 289 ◽  
pp. 379-405 ◽  
Author(s):  
David L. Bruhwiler ◽  
Tasso J. Kaper

In this work, we treat the problem of small-scale, small-amplitude, internal waves interacting nonlinearly with a vigorous, large-scale, undulating shear. The amplitude of the background shear can be arbitrarily large, with a general profile, but our analysis requires that the amplitude vary on a length scale longer than the wavelength of the undulations. In order to illustrate the method, we consider the ray-theoretic model due to Broutman & Young (1986) of high-frequency oceanic internal waves that trap and detrap in a near-inertial wavepacket as a prototype problem. The near-inertial wavepacket tends to transport the high-frequency test waves from larger to smaller wavenumber, and hence to higher frequency. We identify the essential physical mechanisms of this wavenumber transport, and we quantify it. We also show that, for an initial ensemble of test waves with frequencies between the inertial and buoyancy frequencies and in which the number of test waves per frequency interval is proportional to the inverse square of the frequency, a single nonlinear wave–wave interaction fundamentally alters this initial distribution. After the interaction, the slope on a log-log plot is nearly flat, whereas initially it was -2. Our analysis captures this change in slope. The main techniques employed are classical adiabatic invariance theory and adiabatic separatrix crossing theory.


1997 ◽  
Vol 342 ◽  
pp. 263-293 ◽  
Author(s):  
H. S. SHAFI ◽  
R. A. ANTONIA

Measurements of the spanwise and wall-normal components of vorticity and their constituent velocity derivative fluctuations have been made in a turbulent boundary layer over a mesh-screen rough wall using a four-hot-wire vorticity probe. The measured spectra and variances of vorticity and velocity derivatives have been corrected for the effect of spatial resolution. The high-wavenumber behaviour of the spectra conforms closely with isotropy. Over most of the outer layer, the normalized magnitudes of the velocity derivative variances differ significantly from those over a smooth wall layer. The differences are such that the variances are much more nearly isotropic over the rough wall than on the smooth wall. This behaviour is consistent with earlier observations that the large-scale structure in this rough wall layer is more isotropic than that in a smooth wall layer. Isotropy-based approximations for the mean energy dissipation rate and mean enstrophy are consequently more reliable in this rough wall layer than in a smooth wall layer. In the outer layer, the vorticity variances are slightly larger than those over a smooth wall; reflecting structural differences between the two flows.


2015 ◽  
Vol 46 (2) ◽  
pp. 417-437 ◽  
Author(s):  
Amelie Meyer ◽  
Kurt L. Polzin ◽  
Bernadette M. Sloyan ◽  
Helen E. Phillips

AbstractIn the stratified ocean, turbulent mixing is primarily attributed to the breaking of internal waves. As such, internal waves provide a link between large-scale forcing and small-scale mixing. The internal wave field north of the Kerguelen Plateau is characterized using 914 high-resolution hydrographic profiles from novel Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. Altogether, 46 coherent features are identified in the EM-APEX velocity profiles and interpreted in terms of internal wave kinematics. The large number of internal waves analyzed provides a quantitative framework for characterizing spatial variations in the internal wave field and for resolving generation versus propagation dynamics. Internal waves observed near the Kerguelen Plateau have a mean vertical wavelength of 200 m, a mean horizontal wavelength of 15 km, a mean period of 16 h, and a mean horizontal group velocity of 3 cm s−1. The internal wave characteristics are dependent on regional dynamics, suggesting that different generation mechanisms of internal waves dominate in different dynamical zones. The wave fields in the Subantarctic/Subtropical Front and the Polar Front Zone are influenced by the local small-scale topography and flow strength. The eddy-wave field is influenced by the large-scale flow structure, while the internal wave field in the Subantarctic Zone is controlled by atmospheric forcing. More importantly, the local generation of internal waves not only drives large-scale dissipation in the frontal region but also downstream from the plateau. Some internal waves in the frontal region are advected away from the plateau, contributing to mixing and stratification budgets elsewhere.


2013 ◽  
Vol 8 (S300) ◽  
pp. 239-242 ◽  
Author(s):  
Giannina Poletto ◽  
Alphonse C. Sterling ◽  
Stefano Pucci ◽  
Marco Romoli

AbstractBlowout jets constitute about 50% of the total number of X-ray jets observed in polar coronal holes. In these events, the base magnetic loop is supposed to blow open in what is a scaled-down representation of two-ribbon flares that accompany major coronal mass ejections (CMEs): indeed, miniature CMEs resulting from blowout jets have been observed. This raises the question of the possible contribution of this class of events to the solar wind mass and energy flux. Here we make a first crude evaluation of the mass contributed to the wind and of the energy budget of the jets and related miniature CMEs, under the assumption that small-scale events behave as their large-scale analogs. This hypothesis allows us to adopt the same relationship between jets and miniature-CME parameters that have been shown to hold in the larger-scale events, thus inferring the values of the mass and kinetic energy of the miniature CMEs, currently not available from observations. We conclude our work estimating the mass flux and the energy budget of a blowout jet, and giving a crude evaluation of the role possibly played by these events in supplying the mass and energy that feeds the solar wind.


2021 ◽  
Author(s):  
Helen E. Phillips ◽  
Amit Tandon ◽  
Ryo Furue ◽  
Raleigh Hood ◽  
Caroline Ummenhofer ◽  
...  

Abstract. Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and its water properties, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered, which control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean-atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air-sea interactions and climate variability. The second International Indian Ocean Expedition (IIOE-2) and related efforts have motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and between the surface and the deep ocean. In the last decade we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean, and climate variability on interannual to decadal timescales.This synthesis paper reviews the advances in these areas in the last decade.


2016 ◽  
Vol 46 (1) ◽  
pp. 219-231 ◽  
Author(s):  
Frédéric Cyr ◽  
Hans van Haren

AbstractThe Rockall Bank area, located in the northeast Atlantic Ocean, is a region dominated by topographically trapped diurnal tides. These tides generate up- and downslope displacements that can be locally described as swashing motions on the bank. Using high spatial and time resolution of moored temperature sensors, the transition toward the upslope flow (cooling phase) is described as a rapid upslope-propagating bore, likely generated by breaking trapped internal waves. Buoyant anomalies are found during the bore propagation, likely resulting from small-scale instabilities. The imbalance between the rate of disappearance of available potential energy and the dissipation rate of turbulent kinetic energy suggests that these instabilities are growing (i.e., young) and have high mixing potential.


Sign in / Sign up

Export Citation Format

Share Document