scholarly journals Publisher Correction: Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Cáceres ◽  
Rita Quesada ◽  
Mar Iglesias ◽  
Francisco X. Real ◽  
Maria Villamonte ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

1988 ◽  
Vol 118 (2) ◽  
pp. 227-232 ◽  
Author(s):  
L. G. Guijarro ◽  
E. Arilla

ABSTRACT Atrophy of the exocrine pancreas was induced in rabbits by pancreatic duct ligation. Somatostatin concentration and binding in cytosol from rabbit duodenal mucosa were studied after 6 and 14 weeks of pancreatic duct ligation. Somatostatin-like immunoreactivity was significantly increased in the duodenal mucosa in both periods. Scatchard analysis showed a parallel increase in the number of binding sites rather than a change in their affinity. The physiological significance of these findings remains to be clarified. J. Endocr. (1988) 118, 227–232


2001 ◽  
Vol 120 (5) ◽  
pp. A720
Author(s):  
Hong Sik Lee ◽  
Chang Duck Kim ◽  
Byung Won Hur ◽  
Chang Don Kang ◽  
Hoon Jai Chun ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marta Cáceres ◽  
Rita Quesada ◽  
Mar Iglesias ◽  
Francisco X. Real ◽  
Maria Villamonte ◽  
...  

Abstract Pancreatic duct ligation (PDL) in the murine model has been described as an exocrine pancreatic atrophy-inducing procedure. However, its influence has scarcely been described on premalignant lesions. This study describes the histological changes of premalignant lesions and the gene expression in a well-defined model of pancreatic ductal adenocarcinoma by PDL. Selective ligation of the splenic lobe of the pancreas was performed in Ptf1a-Cre(+/ki); K-ras LSLG12Vgeo(+/ki) mice (PDL-Kras mice). Three experimental groups were evaluated: PDL group, controls and shams. The presence and number of premalignant lesions (PanIN 1–3 and Atypical Flat Lesions—AFL) in proximal (PP) and distal (DP) pancreas were studied for each group over time. Microarray analysis was performed to find differentially expressed genes (DEG) between PP and PD. Clinical human specimens after pancreaticoduodenectomy with ductal occlusion were also evaluated. PDL-Kras mice showed an intense pattern of atrophy in DP which was shrunk to a minimal portion of tissue. Mice in control and sham groups had a 7 and 10-time increase respectively of risk of high-grade PanIN 2 and 3 and AFL in their DP than PDL-Kras mice. Furthermore, PDL-Kras mice had significantly less PanIN 1 and 2 and AFL lesions in DP compared to PP. We identified 38 DEGs comparing PP and PD. Among them, several mapped to protein secretion and digestion while others such as Nupr1 have been previously associated with PanIN and PDAC. PDL in Ptf1a-Cre(+/ki); K-ras LSLG12Vgeo(+/ki) mice induces a decrease in the presence of premalignant lesions in the ligated DP. This could be a potential line of research of interest in some cancerous risk patients.


1983 ◽  
Vol 117 (2) ◽  
pp. 281-286 ◽  
Author(s):  
GUNNAR ISAKSSON ◽  
INGEMAR IHSE ◽  
INGMAR LUNDQUIST

1995 ◽  
Vol 108 (4) ◽  
pp. A399
Author(s):  
M. Wada ◽  
R. Doi ◽  
R. Hosotani ◽  
J. Lee ◽  
M. Imamura

2001 ◽  
Vol 2 (2) ◽  
pp. 101-112 ◽  
Author(s):  
J. Catala ◽  
M. Daumas ◽  
A. Pham Huu Chanh ◽  
B. Lasserre ◽  
E Hollande

Plasma levels of glucose, insulin and glucagon were measured at various time intervals after pancreatic duct ligation (PDL) in rabbits. Two hyperglycemic periods were observed: one between 15–90 days (peak at 30 days of 15.1 ± 1.2mmol/l, p < 0.01), and the other at 450 days (11.2 ± 0.5 mmol/l, p < 0.02). The first hyperglycemic episode was significantly correlated with both hypoinsulinemia (41.8 ± 8pmol/l, r= –0.94, p < 0.01) and hyperglucagonemia (232 ± 21ng/l, r=0.95, p < 0.01). However, the late hyperglycemic phase (450 days), which was not accompanied by hypoinsulinemia, was observed after the hyperglucagonemia (390 days) produced by abundant immunostained A-cells giving rise to a 3-fold increase in pancreatic glucagon stores. The insulin and glucagon responses to glucose loading at 180, 270 and 450 days reflected the insensitivity of B- and A-cells to glucose. The PDL rabbit model with chronic and severe glycemic disorders due to the predominant role of glucagon mimicked key features of the NIDDM syndrome secondary to exocrine disease.


Sign in / Sign up

Export Citation Format

Share Document