scholarly journals Antagonism between brain regions relevant for cognitive control and emotional memory facilitates the generation of humorous ideas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.

2020 ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the downregulation of frontal brain regions is associated with an upregulation in the amygdala, which is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


2020 ◽  
Vol 29 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Jordan Grafman ◽  
Irene Cristofori ◽  
Wanting Zhong ◽  
Joseph Bulbulia

Religion’s neural underpinnings have long been a topic of speculation and debate, but an emerging neuroscience of religion is beginning to clarify which regions of the brain integrate moral, ritual, and supernatural religious beliefs with functionally adaptive responses. Here, we review evidence indicating that religious cognition involves a complex interplay among the brain regions underpinning cognitive control, social reasoning, social motivations, and ideological beliefs.


2007 ◽  
Vol 33 (2-3) ◽  
pp. 433-456 ◽  
Author(s):  
Adam J. Kolber

A neurologist with abdominal pain goes to see a gastroenterologist for treatment. The gastroenterologist asks the neurologist where it hurts. The neurologist replies, “In my head, of course.” Indeed, while we can feel pain throughout much of our bodies, pain signals undergo most of their processing in the brain. Using neuroimaging techniques like functional magnetic resonance imaging (“fMRI”) and positron emission tomography (“PET”), researchers have more precisely identified brain regions that enable us to experience physical pain. Certain regions of the brain's cortex, for example, increase in activation when subjects are exposed to painful stimuli. Furthermore, the amount of activation increases with the intensity of the painful stimulus. These findings suggest that we may be able to gain insight into the amount of pain a particular person is experiencing by non-invasively imaging his brain.Such insight could be particularly valuable in the courtroom where we often have no definitive medical evidence to prove or disprove claims about the existence and extent of pain symptoms.


1989 ◽  
Vol 155 (S7) ◽  
pp. 93-98 ◽  
Author(s):  
Nancy C. Andreasen

When Kraepelin originally defined and described dementia praecox, he assumed that it was due to some type of neural mechanism. He hypothesised that abnormalities could occur in a variety of brain regions, including the prefrontal, auditory, and language regions of the cortex. Many members of his department, including Alzheimer and Nissl, were actively involved in the search for the neuropathological lesions that would characterise schizophrenia. Although Kraepelin did not use the term ‘negative symptoms', he describes them comprehensively and states explicitly that he believes the symptoms of schizophrenia can be explained in terms of brain dysfunction:“If it should be confirmed that the disease attacks by preference the frontal areas of the brain, the central convolutions and central lobes, this distribution would in a certain measure agree with our present views about the site of the psychic mechanisms which are principally injured by the disease. On various grounds, it is easy to believe that the frontal cortex, which is specially well developed in man, stands in closer relation to his higher intellectual abilities, and these are the faculties which in our patients invariably suffer profound loss in contrast to memory and acquired ability.” Kraepelin (1919, p. 219)


2009 ◽  
Vol 364 (1522) ◽  
pp. 1407-1416 ◽  
Author(s):  
Katherine Woollett ◽  
Hugo J. Spiers ◽  
Eleanor A. Maguire

While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25 000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature.


2021 ◽  
Author(s):  
Beatrice M. Jobst ◽  
Selen Atasoy ◽  
Adrián Ponce-Alvarez ◽  
Ana Sanjuán ◽  
Leor Roseman ◽  
...  

AbstractLysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain’s global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.HighlightsNovel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD)Shift of brain’s global working point to more complex dynamics after LSD intakeConsistently longer recovery time after model perturbation under LSD influenceStrongest effects in resting state networks relevant for psychedelic experienceHigher response diversity across brain regions under LSD influence after an external in silico perturbation


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

2016 ◽  
Author(s):  
Benjamin Gagl ◽  
Fabio Richlan ◽  
Philipp Ludersdorfer ◽  
Jona Sassenhagen ◽  
Susanne Eisenhauer ◽  
...  

AbstractTo characterize the left-ventral occipito-temporal cortex (lvOT) role during reading in a quantitatively explicit and testable manner, we propose the lexical categorization model (LCM). The LCM assumes that lvOT optimizes linguistic processing by allowing fast meaning access when words are familiar and filter out orthographic strings without meaning. The LCM successfully simulates benchmark results from functional brain imaging. Empirically, using functional magnetic resonance imaging, we demonstrate that quantitative LCM simulations predict lvOT activation across three studies better than alternative models. Besides, we found that word-likeness, which is assumed as input to LCM, is represented posterior to lvOT. In contrast, a dichotomous word/non-word contrast, which is assumed as the LCM’s output, could be localized to upstream frontal brain regions. Finally, we found that training lexical categorization results in more efficient reading. Thus, we propose a ventral-visual-stream processing framework for reading involving word-likeness extraction followed by lexical categorization, before meaning extraction.


2021 ◽  
Author(s):  
Derek Martin Smith ◽  
Brian T Kraus ◽  
Ally Dworetsky ◽  
Evan M Gordon ◽  
Caterina Gratton

Connector 'hubs' are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability, to better understand if hubs are (a) relatively conserved across people, (b) locations with malleable connectivity, leading individuals to show variable hub profiles, or (c) artifacts arising from cross-person variation. To answer this question, we compared the locations of hubs and regions of strong idiosyncratic functional connectivity ("variants") in both the Midnight Scan Club and Human Connectome Project datasets. Group hubs defined based on the participation coefficient did not overlap strongly with variants. These hubs have relatively strong similarity across participants and consistent cross-network profiles. Consistency across participants was further improved when participation coefficient hubs were allowed to shift slightly in local position. Thus, our results demonstrate that group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density, which are based on spatial proximity and show higher correspondence to locations of individual variability.


2017 ◽  
Author(s):  
Cameron Parro ◽  
Matthew L Dixon ◽  
Kalina Christoff

AbstractCognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control, and has begun to elucidate the brain regions that may support this effect. Here, we conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth in order to delineate the brain regions that are consistently activated across studies. The analysis included functional neuroimaging studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus (IFS) and intraparietal sulcus (IPS), as well as consistent recruitment in regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex (aMCC). A large-scale exploratory meta-analysis using Neurosynth replicated the ALE results, and also identified the caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction/premotor cortex (IFJ/PMC), and hippocampus. Finally, we conducted separate ALE analyses to compare recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.


Sign in / Sign up

Export Citation Format

Share Document