scholarly journals Assessment with clinical data of a coupled bio-hemodynamics numerical model to predict leukocyte adhesion in coronary arteries

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Umberto Ciri ◽  
Ruth L. Bennett ◽  
Rita Bhui ◽  
David S. Molony ◽  
Habib Samady ◽  
...  

AbstractNumerical simulations of coupled hemodynamics and leukocyte transport and adhesion inside coronary arteries have been performed. Realistic artery geometries have been obtained for a set of four patients from intravascular ultrasound and angiography images. The numerical model computes unsteady three-dimensional blood hemodynamics and leukocyte concentration in the blood. Wall-shear stress dependent leukocyte adhesion is also computed through agent-based modeling rules, fully coupled to the hemodynamics and leukocyte transport. Numerical results have a good correlation with clinical data. Regions where high adhesion is predicted by the simulations coincide to a good approximation with artery segments presenting plaque increase, as documented by clinical data from baseline and six-month follow-up exam of the same artery. In addition, it is observed that the artery geometry and, in particular, the tortuosity of the centerline are a primary factor in determining the spatial distribution of wall-shear stress, and of the resulting leukocyte adhesion patterns. Although further work is required to overcome the limitations of the present model and ultimately quantify plaque growth in the simulations, these results are encouraging towards establishing a predictive methodology for atherosclerosis progress.

2013 ◽  
Vol 25 (04) ◽  
pp. 1350056
Author(s):  
Alireza Sanati ◽  
Kamran Hassani ◽  
Mahdi Navidbakhsh

Stent implantation alters coronary artery hemodynamic and wall shear stress during cardiac cycles. In this study, three-dimensional models were used to analyze the effects of different stent designs and strut thicknesses on the hemodynamic of the artery. The flow was assumed to be pulsatile and stent models were expanded in the artery the same as angioplasty procedure that uses balloon. The data was applied to Fluent-ANSYS package as a UDF MATLAB code. A non-slip condition was applied to the artery walls. The pressure variation in different stents and the wall shear stress distribution were studied. Furthermore, the hemodynamic effects on the flow were investigated for two different thickness values of the same stent design. These results showed that stent implanting is one of the main parameters of pressure drop in the artery. Moreover, the surface of the stent is the location of maximum wall shear stress and the thicker stent strut did not vary this stress much. Our study implies that some design parameters such as thickness affect the hemodynamic factors of blood after stent implantation. Even stent implanting causes re-stenosis in the coronary artery. Using new real models is suggested to investigate new aspects of stent design and related effects on the hemodynamic of coronary arteries.


Author(s):  
Karol Calò ◽  
Giuseppe De Nisco ◽  
Diego Gallo ◽  
Claudio Chiastra ◽  
Ayla Hoogendoorn ◽  
...  

Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress magnitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progression of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in coronary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features combining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape of the wall shear stress–based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
E M J Hartman ◽  
A M Kok ◽  
A Hoogendoorn ◽  
F J H Gijsen ◽  
A F W Steen ◽  
...  

Abstract Introduction Local wall shear stress (WSS) metrics, high local lipid levels (as detected by near-infrared spectroscopy (NIRS)), as well as systemic lipid levels, have been individually associated with atherosclerotic disease progression. However, a possible synergistic effect remains to be elucidated. This study is the first study to combine WSS metrics with NIRS-detected local lipid content to investigate a potential synergistic effect on plaque progression in human coronary arteries. Methods The IMPACT study is a prospective, single centre study investigating the relation between atherosclerotic plaque progression and WSS in human coronary arteries. Patients with ACS treated with PCI were included. At baseline and after 1-year follow-up, patients underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) imaging and intravascular doppler flow measurements of at least one non-culprit coronary artery. After one month, a CT angiography was made. CT derived centreline combined with IVUS lumen contours resulted in a 3D reconstruction of the vessel. The following WSS metrics were computed using computational fluid dynamics applying the vessel specific invasive flow measurements: time-average wall shear stress (TAWSS), relative residence time (RRT), cross-flow index, oscillatory shear index and transverse wall shear stress. Low TAWSS is known as pro atherogenic, in contrast to all the other shear stress metrics, at which a high magnitude is pro-atherogenic. The arteries were divided into 1.5mm/45° sectors. Based on NIRS-IVUS, wall thickness change over time was determined and NIRS positive sectors detected. Furthermore, per vessel the shear stress was divided into tertiles (low, intermediate, high). To investigate the synergistic effect of local lipids on shear stress related plaque growth, wall thickness change over time was related to the different shear stress metrics comparing the NIRS-positive with the NIRS-negative sectors. Results 15 non-culprit coronary arteries from the first 14 patients were analyzed (age 62±10 years old and 92.9% male). A total of 2219 sectors were studied (5.2%, N=130, NIRS-positive) for wall thickness changes. After studying all five shear stress metrics, we found for TAWSS and RRT that presence of lipids, as detected by NIRS, amplified the effect of shear stress on plaque progression (see figure). Sectors presenting with lipid-rich plaque, compared to NIRS-negative sectors, showed more progression when they were exposed to low TAWSS (p=0.07) or high RRT (p=0.012) and more regression in sectors exposed to high TAWSS (p=0.10) or low RRT (p=0.06). Delta wall thickness vs shear stress Conclusion We presented the first preliminary results of the IMPACT study, showing the synergistic effect of lipid rich plaque and shear stress on plaque progression. Therefore, intravascular lipid-rich plaque (NIRS) assessment has added value to shear stress profiling for the prediction of plaque growth, leading to improved risk stratification. Acknowledgement/Funding ERC starting grant 310457


2016 ◽  
Vol 11 (10) ◽  
pp. 1779-1790 ◽  
Author(s):  
Guillaume Zahnd ◽  
Jelle Schrauwen ◽  
Antonios Karanasos ◽  
Evelyn Regar ◽  
Wiro Niessen ◽  
...  

Circulation ◽  
2014 ◽  
Vol 129 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Riti Mahadevia ◽  
Alex J. Barker ◽  
Susanne Schnell ◽  
Pegah Entezari ◽  
Preeti Kansal ◽  
...  

2015 ◽  
Vol 14 (Suppl 1) ◽  
pp. S2 ◽  
Author(s):  
David S Molony ◽  
Lucas H Timmins ◽  
Olivia Y Hung ◽  
Emad Rasoul-Arzrumly ◽  
Habib Samady ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document