scholarly journals Florigen governs shoot regeneration

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaarit Kutsher ◽  
Michal Fisler ◽  
Adi Faigenboim ◽  
Moshe Reuveni

AbstractIt is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to study the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. We conclude that florigen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity.

2021 ◽  
Author(s):  
Yaarit Kutsher ◽  
Michal Fisler ◽  
Adi DORON-FAIGENBOIM ◽  
Moshe Reuveni

Abstract It is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to study the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. We conclude that florigen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity.


2021 ◽  
Author(s):  
Yaarit Kutsher ◽  
Michal Fisler ◽  
Adi Faigenboim ◽  
Moshe Reuveni

AbstractIt is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to studied the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. We conclude that florigen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity.


2000 ◽  
Vol 279 (5) ◽  
pp. H2077-H2084 ◽  
Author(s):  
David B. Pearse ◽  
Patrice M. Becker

We previously found that increased intravascular pressure decreased ischemic lung injury by a nitric oxide (NO)-dependent mechanism (Becker PM, Buchanan W, and Sylvester JT. J Appl Physiol 84: 803–808, 1998). To determine the role of cyclic nucleotides in this response, we measured the reflection coefficient for albumin (ςalb), fluid flux ( J˙), cGMP, and cAMP in ferret lungs subjected to either 45 min (“short”; n = 7) or 180 min (“long”) of ventilated ischemia. Long ischemic lungs had “low” (1–2 mmHg, n = 8) or “high” (7–8 mmHg, n = 6) vascular pressure. Other long low lungs were treated with the NO donor ( Z)-1-[ N-(3-ammoniopropyl)- N-( n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA-NONOate; 5 × 10−4 M, n = 6) or 8-bromo-cGMP (5 × 10−4 M, n = 6). Compared with short ischemia, long low ischemia decreased ςalb (0.23 ± 0.04 vs. 0.73 ± 0.08; P < 0.05) and increased J˙ (1.93 ± 0.26 vs. 0.58 ± 0.22 ml · min−1 · 100 g−1; P < 0.05). High pressure prevented these changes. Lung cGMP decreased by 66% in long compared with short ischemia. Lung cAMP did not change. PAPA-NONOate and 8-bromo-cGMP increased lung cGMP, but only 8-bromo-cGMP decreased permeability. These results suggest that ischemic vascular injury was, in part, mediated by a decrease in cGMP. Increased vascular pressure prevented injury by a cGMP-independent mechanism that could not be mimicked by administration of exogenous NO.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Xiaoping Liu ◽  
Mohamed A El-Mahdy ◽  
Raed S Ismail ◽  
Sean Little ◽  
Le T Thuy ◽  
...  

Cytoglobin (Cygb) can effectively metabolize nitric oxide (NO), a potent vasodilator, in the presence of oxygen and reductants. Cygb in the vascular wall may affect cardiovascular functions by changing the rate of NO metabolism. In this study, we directly tested the vascular role of Cygb using Cygb knockout (Cygb-/-) mice. The mean blood pressure of Cygb-/- and C57BL/6 wild type (WT) mice was 65.3 ± 1.9 mmHg and 93.7 ± 1.5 mmHg, respectively (n=10). Using echocardiography, we observed that cardiac output (CO) was increased in Cygb-/- mice compared to WT with values of 29.8 ± 3.9 vs 17.7 ± 0.9 ml/min. The systemic vascular resistance (SVR) of Cygb-/- mice was decreased by ~60% vs that of WT mice (Fig. 1). Further, the inner diameter (id) of aorta of Cygb-/- mice was dilated compared to WT with values of 2.2 ± 0.1 mm vs 1.5 ± 0.05 mm (n=5), respectively. After treatment with the NO synthase inhibitor L-NAME, no difference in the aortic id remained between Cygb-/- (1.55 ± 0.03 mm) and WT (1.49 ± 0.02 mm) mice, indicating that the NO pathway is responsible for the difference in vascular inner diameters and tone. Myograph experiments show that the aortic vasodilation response of Cygb-/- mice is much more sensitive to acetylcholine (Ach) or the NO donor nitroprusside (SNP) (EC50 shifts from 13 nM and 2.9 nM (WT mice) to 0.33 nM and 0.16 nM (Cygb-/-) for Ach and SNP, respectively). Using NO electrodes to measure the rate of NO consumption by SMCs and quantitative imunoblotting to estimate Cygb content in RSMCs-AR and Cygb knockdown RSMCs, we observed that 90% of NO consumption by RSMCs-AR is caused by the intracellular Cygb. Our results indicate that Cygb deficiency in the vascular wall of Cygb-/- mice greatly reduces the rate of NO metabolism and increases vascular NO concentration, resulting in vasodilation, increase in vessel lumen diameter, and decrease in SVR. These results demonstrate that Cygb regulates cardiac function and vessel tone by controlling the rate of vascular NO metabolism.


1997 ◽  
Vol 273 (5) ◽  
pp. G1007-G1013 ◽  
Author(s):  
Yoshinori Horie ◽  
Robert Wolf ◽  
D. Neil Granger

The overall objective of this study was to assess the contribution of an altered bioavailability of nitric oxide (NO) to the leukocyte adhesion and hypoxic stress elicited in the liver by gut ischemia-reperfusion (I/R). The accumulation of leukocytes, number of nonperfused sinusoids (NPS), and NADH autofluorescence were monitored (by intravital microscopy) in mouse liver after 15 min of superior mesenteric artery occlusion and 60 min of reperfusion. Leukostasis, NPS, and NADH autofluorescence (indicating hypoxia) were all increased in the liver at 60 min after gut I/R. The NO synthase inhibitor N G-monomethyl-l-arginine (l-NMMA) exaggerated the liver leukostasis elicited by gut I/R, responses that were prevented by coadministration of l-arginine. The NO donor diethylenetriamine-NO (DETA-NO) andl-arginine were both effective in attenuating the gut I/R-induced leukostasis and increased NADH autofluorescence, whereas neither DETA nord-arginine exerted a protective action. These findings indicate that NO is an important determinant of the liver leukostasis, impaired sinusoidal perfusion, and tissue hypoxia elicited by gut I/R.


2000 ◽  
Vol 278 (4) ◽  
pp. H1211-H1217 ◽  
Author(s):  
Roby D. Rakhit ◽  
Richard J. Edwards ◽  
James W. Mockridge ◽  
Anwar R. Baydoun ◽  
Amanda W. Wyatt ◽  
...  

The aim of this study was to investigate the role of nitric oxide (NO) in a cellular model of early preconditioning (PC) in cultured neonatal rat ventricular myocytes. Cardiomyocytes “preconditioned” with 90 min of stimulated ischemia (SI) followed by 30 min reoxygenation in normal culture conditions were protected against subsequent 6 h of SI. PC was blocked by N G-monomethyl-l-arginine monoacetate but not by dexamethasone pretreatment. Inducible nitric oxide synthase (NOS) protein expression was not detected during PC ischemia. Pretreatment (90 min) with the NO donor S-nitroso- N-acetyl-l,l-penicillamine (SNAP) mimicked PC, resulting in significant protection. SNAP-triggered protection was completely abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) but was unaffected by chelerythrine or the presence of glibenclamide and 5-hydroxydecanoate. With the use of RIA, SNAP treatment increased cGMP levels, which were blocked by ODQ. Hence, NO is implicated as a trigger in this model of early PC via activation of a constitutive NOS isoform. After exposure to SNAP, the mechanism of cardioprotection is cGMP dependent but independent of protein kinase C or ATP-sensitive K+ channels. This differs from the proposed mechanism of NO-induced cardioprotection in late PC.


1995 ◽  
Vol 268 (2) ◽  
pp. G207-G214 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

The main objective was to study the role of nitric oxide (NO) in the conversion of migrating myoelectric complexes (MMC) to the irregular electrical activity characteristic of the postprandial state. Both rats and chickens were implanted with electrodes for electromyography in the small intestine. Intravenous infusion of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, induced an organized MMC-like pattern in fed rats. Infusion of sodium nitroprusside, a NO donor, disrupted the MMC, inducing a postprandial-like motor pattern in fasting rats. Similarly, in chickens L-NNA mimicked the fasting pattern, consisting of a shortening of phase II, enlargement of phase III, orad displacement of the origin of the MMC, and an increase in the speed of phase III propagation. An inhibition of NO synthesis seems to be involved in the induction of the fasting motor pattern, whereas an increase of NO mediates the occurrence of the fed pattern. It is suggested that NO might be the final mediator in the control of small intestine motor patterns.


2000 ◽  
Vol 99 (6) ◽  
pp. 497-504 ◽  
Author(s):  
Jin-Gang ZHANG ◽  
Manuel GALIÑANES

The role of the L-arginine/nitric oxide (NO) pathway in myocardial ischaemic/reperfusion injury remains controversial in experimental animal models. The aim of the present studies was to investigate the role of this pathway in the human myocardium. Myocardial specimens from right atrial appendages of patients undergoing elective coronary bypass graft surgery were incubated in crystalloid buffer at 37 °C and subjected to 120 min of simulated ischaemia followed by 120 min of reoxygenation. Tested drugs were added 15 min before ischaemia, and maintained during ischaemia and throughout reoxygenation. Ischaemia resulted in severe myocardial damage, as assessed by the leakage of lactate dehydrogenase (LDH) into the incubation medium and by the capacity of the tissue to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan product. L-Arginine (10 mM), a precursor of NO, significantly decreased LDH leakage (from 9.0±0.6 to 5.3±0.3 units/g wet wt; P < 0.05), but had no effect on MTT reduction or oxygen consumption. D-Arginine (10 mM), NG-nitro-L-arginine methyl ester (L-NAME; 0.5 mM), an NO synthase inhibitor, and S-nitroso-N-acetylpenicillamine (at 1, 100, 500 and 1000 µM), an NO donor, had no significant effects on the measured indices, and L-NAME did not reverse the protection afforded by L-arginine against LDH leakage. In addition, the formation of nitrotyrosine was not influenced by ischaemia/reoxygenation alone or by the agents investigated. In conclusion, these data suggest that L-arginine affords modest protection against ischaemic/reoxygenation injury of the human myocardium, an action that is NO-independent, and that NO metabolism does not play a significant role in this model.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1145
Author(s):  
Nesrine Mabrouk ◽  
Silvia Ghione ◽  
Véronique Laurens ◽  
Stéphanie Plenchette ◽  
Ali Bettaieb ◽  
...  

Cellular senescence is a cell state involved in both physiological and pathological processes such as age-related diseases and cancer. While the mechanism of senescence is now well known, its role in tumorigenesis still remains very controversial. The positive and negative effects of senescence on tumorigenesis depend largely on the diversity of the senescent phenotypes and, more precisely, on the senescence-associated secretory phenotype (SASP). In this review, we discuss the modulatory effect of nitric oxide (NO) in SASP and the possible benefits of the use of NO donors or iNOS inducers in combination with senotherapy in cancer treatment.


Reproduction ◽  
2007 ◽  
Vol 134 (4) ◽  
pp. 605-613 ◽  
Author(s):  
M C Pustovrh ◽  
A Jawerbaum ◽  
V White ◽  
E Capobianco ◽  
R Higa ◽  
...  

Matrix metalloproteinases (MMPs) play an important role in tissue remodeling that accompanies the rapid growth, differentiation, and structural changes of the placenta and several fetal organs. In the present study, we investigated whether the diabetic maternal environment may alter the regulatory homeostasis exerted by nitric oxide (NO) on MMPs activity in the feto-placental unit from rats at midgestation. We found that NADPH-diaphorase activity, which reflects the distribution and activity of NO synthases (NOS), was increased in both placenta and fetuses from diabetic rats when compared with controls. In addition, while a NO donor enhanced MMP2 and MMP9 activities, a NOS inhibitor reduced these activities in the maternal side of the placenta from control rats. This regulatory effect of NO was only observed on MMP9 in the diabetic group. On the other hand, the NO donor did not modify MMP2 and MMP9 activities, while the NOS inhibitor reduced MMP9 activity in the fetal side of both control and diabetic placentas. In the fetuses, MMP2 was enhanced by the NO donor and reduced by the NO inhibitor in both fetuses from control and diabetic rats. Overall, this study demonstrates that NO is able to modulate the activation of MMPs in the feto-placental unit, and provides supportive evidence that increased NOS activity leads to NO overproduction in the feto-placental unit from diabetic rats, an alteration closely related to the observed MMPs dysregulation that may have profound implications in the formation and function of the placenta and the fetal organs.


Sign in / Sign up

Export Citation Format

Share Document