scholarly journals Characterisation of mass distributions of solvent-fractionated lignins using analytical ultracentrifugation and size exclusion chromatography methods

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yudong Lu ◽  
Lionard Joosten ◽  
Jacqueline Donkers ◽  
Fabrizio Andriulo ◽  
Ted M. Slaghek ◽  
...  

AbstractLignins are valuable renewable resources for the potential production of a large array of biofuels, aromatic chemicals and biopolymers. Yet native and industrial lignins are complex, highly branched and heterogenous macromolecules, properties that have to date often undermined their use as starting materials in lignin valorisation strategies. Reliable knowledge of weight average molar mass, conformation and polydispersity of lignin starting materials can be proven to be crucial to and improve the prospects for the success of such strategies. Here we evaluated the use of commonly-used size exclusion chromatography (SEC)—calibrated with polystyrene sulphonate standards—and under-used analytical ultracentrifugation—which does not require calibration—to characterise a series of lignin fractions sequentially extracted from soda and Kraft alkaline lignins using ethyl acetate, methyl ethyl ketone (MEK), methanol and acetone:water (fractions F01–F04, respectively). Absolute values of weight average molar mass (Mw) determined using sedimentation equilibrium in the analytical ultracentrifuge of (3.0 ± 0.1) kDa and (4.2 ± 0.2) kDa for soda and Kraft lignins respectively, agreed closely with previous SEC-determined Mws and reasonably with the size exclusion chromatography measurements employed here, confirming the appropriateness of the standards (with the possible exceptions of fraction F05 for soda P1000 and F03 for Indulin). Both methods revealed the presence of low (~ 1 kDa) Mw material in F01 and F02 fractions followed by progressively higher Mw in subsequent fractions. Compositional analysis confirmed > 90% (by weight) total lignins successively extracted from both lignins using MEK, methanol and acetone:water (F02 to F04). Considerable heterogeneity of both unfractionated and fractionated lignins was revealed through determinations of both sedimentation coefficient distributions and polydispersity indices. The study also demonstrates the advantages of using analytical ultracentrifugation, both alongside SEC as well as in its own right, for determining absolute Mw, heterogeneity and conformation information for characterising industrial lignins.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicole L. McIntosh ◽  
Geoffrey Y. Berguig ◽  
Omair A. Karim ◽  
Christa L. Cortesio ◽  
Rolando De Angelis ◽  
...  

AbstractAdeno associated virus (AAV) capsids are a leading modality for in vivo gene delivery. Complete and precise characterization of capsid particles, including capsid and vector genome concentration, is necessary to safely and efficaciously dose patients. Size exclusion chromatography (SEC) coupled to multiangle light scattering (MALS) offers a straightforward approach to comprehensively characterize AAV capsids. The current study demonstrates that this method provides detailed AAV characterization information, including but not limited to aggregation profile, size-distribution, capsid content, capsid molar mass, encapsidated DNA molar mass, and total capsid and vector genome titer. Currently, multiple techniques are required to generate this information, with varying accuracy and precision. In the current study, a new series of equations for SEC-MALS are used in tandem with intrinsic properties of the capsids and encapsidated DNA to quantify multiple physical AAV attributes in one 20-min run with minimal sample manipulation, high accuracy, and high precision. These novel applications designate this well-established method as a powerful tool for product development and process analytics in future gene therapy programs.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Martina Adler ◽  
Harald Pasch ◽  
Christian Meier ◽  
Raimund Senger ◽  
Hans-Günter Koban ◽  
...  

AbstractA robust and reproducible method for the molar mass analysis of cationic copolymers based on dimethylaminoethyl methacrylate or trimethylammonioethyl methacrylate and different (meth)acrylates has been developed. Size exclusion chromatography (SEC) using a novel polyester-based packing as the stationary phase and dimethylacetamide (DMAC) as the mobile phase yields highly accurate results for copolymers with an amino comonomer content up to 50 wt.-%. To suppress the different polar and ionic interactions between sample molecules, stationary phase and eluent, DMAC was modified with LiBr and tris(hydroxymethylamino) methane (TRIS). Calibrating the SEC system with poly(methyl methacrylate) of narrow polydispersity, molar masses were obtained that are in good agreement with viscosity data. Reproducibility and robustness of the novel method were proven by running samples for an extended period of two weeks.


Sign in / Sign up

Export Citation Format

Share Document