scholarly journals Extracellular NLRP3 inflammasome particles are internalized by human coronary artery smooth muscle cells and induce pro-atherogenic effects

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanne Gaul ◽  
Karen Marie Schaeffer ◽  
Lena Opitz ◽  
Christina Maeder ◽  
Alexander Kogel ◽  
...  

AbstractInflammation driven by intracellular activation of the NLRP3 inflammasome is involved in the pathogenesis of a variety of diseases including vascular pathologies. Inflammasome specks are released into the extracellular compartment from disrupting pyroptotic cells. The potential uptake and function of extracellular NLRP3 inflammasomes in human coronary artery smooth muscle cells (HCASMC) are unknown. Fluorescently labeled NLRP3 inflammasome particles were isolated from a mutant NLRP3-YFP cell line and used to treat primary HCASMC for 4 and 24 h. Fluorescent and expressional analyses showed that extracellular NLRP3-YFP particles are internalized into HCASMC, where they remain active and stimulate intracellular caspase-1 (1.9-fold) and IL-1β (1.5-fold) activation without inducing pyroptotic cell death. Transcriptomic analysis revealed increased expression level of pro-inflammatory adhesion molecules (ICAM1, CADM1), NLRP3 and genes involved in cytoskleleton organization. The NLRP3-YFP particle-induced gene expression was not dependent on NLRP3 and caspase-1 activation. Instead, the effects were partly abrogated by blocking NFκB activation. Genes, upregulated by extracellular NLRP3 were validated in human carotid artery atheromatous plaques. Extracellular NLRP3-YFP inflammasome particles promoted the secretion of pro-atherogenic and inflammatory cytokines such as CCL2/MCP1, CXCL1 and IL-17E, and increased HCASMC migration (1.8-fold) and extracellular matrix production, such as fibronectin (5.8-fold) which was dependent on NFκB and NLRP3 activation. Extracellular NLRP3 inflammasome particles are internalized into human coronary artery smooth muscle cells where they induce pro-inflammatory and pro-atherogenic effects representing a novel mechanism of cell-cell communication and perpetuation of inflammation in atherosclerosis. Therefore, extracellular NLRP3 inflammasomes may be useful to improve the diagnosis of inflammatory diseases and the development of novel anti-inflammatory therapeutic strategies.

2000 ◽  
Vol 32 (12) ◽  
pp. 2195-2206 ◽  
Author(s):  
Rüdiger Blindt ◽  
Anja-Katrin Bosserhoff ◽  
Ute Zeiffer ◽  
Nicole Krott ◽  
Peter Hanrath ◽  
...  

2018 ◽  
Vol 50 (4) ◽  
pp. 1301-1317 ◽  
Author(s):  
Hongmei Li ◽  
Xian Wang ◽  
Anlong Xu

Background/Aims: Approximately 10%-20% of patients with acute cardiovascular disease who have received coronary intervention suffer restenosis and high inflammation. The stent compound paclitaxel+hirudin was prepared for the treatment of post-intervention restenosis. This study aimed to explore the anti-inflammatory and anti-restenosis mechanisms of paclitaxel+hirudin with regard to the TLR4/MyD88/NF-κB pathway. Methods: Human coronary artery smooth muscle cells (HCASMCs) at 4-6 generations after in vitro culture were used as a model. Lipopolysaccharide (LPS) was used as an inducer to maximally activate the TLR4/MyD88/NF-κB inflammation pathway. After MyD88 knockdown and selective blocking of MyD88 degradation with epoxomicin, the effects of paclitaxel+hirudin stenting on key sites of the TLR4/MyD88/NF-κB pathway were detected using ELISA, Q-PCR, and western blot analysis. Results: LPS at 1 μg/mL for 48 h was the optimal modeling condition for inflammatory activation of HCASMCs. Paclitaxel+hirudin inhibited the levels of key proteins and the gene expression, except for that of the MyD88 gene, of the TLR4-MyD88 pathway. The trend of the effect of paclitaxel+hirudin on the pathway proteins was similar to that of MyD88 knockdown. After epoxomicin intervention, the inhibitory effects of paclitaxel+hirudin on the key genes and proteins of the TLR4-MyD88 pathway were significantly weakened, which even reached pre-intervention levels. Paclitaxel+hirudin affected the MyD88 protein in a dosage-dependent manner. Conclusion: The paclitaxel+hirudin compound promotes MyD88 degradation in the TLR4/MyD88/NF-κB pathway to reduce the activity of TLR4 and NF-κB p65 and to weaken the LPS-initiated inflammatory reactions of IL-1β, IL-6, and TNF-α.


2004 ◽  
Vol 72 (11) ◽  
pp. 6717-6721 ◽  
Author(s):  
Yuliya Y. Kleshchenko ◽  
Tapria N. Moody ◽  
Vyacheslav A. Furtak ◽  
Josiah Ochieng ◽  
Maria F. Lima ◽  
...  

ABSTRACT Human galectin-3 binds to the surface of Trypanosoma cruzi trypomastigotes and human coronary artery smooth muscle (CASM) cells. CASM cells express galectin-3 on their surface and secrete it. Exogenous galectin-3 increased the binding of T. cruzi to CASM cells. Trypanosome binding to CASM cells was enhanced when either T. cruzi or CASM cells were preincubated with galectin-3. Cells stably transfected with galectin-3 antisense show a dramatic decrease in galectin-3 expression and very little T. cruzi adhesion to cells. The addition of galectin-3 to these cells restores their initial capacity to bind to trypanosomes. Thus, host galectin-3 expression is required for T. cruzi adhesion to human cells and exogenous galectin-3 enhances this process, leading to parasite entry.


2011 ◽  
Vol 53 (4) ◽  
pp. 1044-1051 ◽  
Author(s):  
Qinxue Ding ◽  
Hong Chai ◽  
Nausheen Mahmood ◽  
Jerry Tsao ◽  
Daria Mochly-Rosen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document