scholarly journals Discomfort-related changes of call rate and acoustic variables of ultrasonic vocalizations in adult yellow steppe lemmings Eolagurus luteus

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna V. Klenova ◽  
Ilya A. Volodin ◽  
Olga G. Ilchenko ◽  
Elena V. Volodina

AbstractPotential of ultrasonic vocalizations (USVs) to reflect a degree of discomfort of a caller is mostly investigated in laboratory rats and mice but poorly known in other rodents. We examined 36 (19 male, 17 female) adult yellow steppe lemmings Eolagurus luteus for presence of USVs during 8-min experimental trials including 2-min test stages of increasing discomfort: isolation, touch, handling and body measure. We found that 33 of 36 individuals vocalized at isolation stage, i.e., without any human impact. For 14 (6 male and 8 female) individuals, a repeated measures approach revealed that increasing discomfort from isolation to handling stages resulted in increase of call power quartiles and fundamental frequency, whereas call rate remained unchanged. We discuss that, in adult yellow steppe lemmings, the discomfort-related changes of USV fundamental frequency and power variables follow the same common rule as the audible calls of most mammals, whereas call rate shows a different trend. These data contribute to research focused on searching the universal acoustic cues to discomfort in mammalian USVs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Larry Carbone

AbstractAlone among Western nations, the United States has a two-tier system for welfare protections for vertebrate animals in research. Because its Animal Welfare Act (AWA) excludes laboratory rats and mice (RM), government veterinarians do not inspect RM laboratories and RM numbers are only partially reported to government agencies1. Without transparent statistics, it is impossible to track efforts to reduce or replace these sentient animals’ use or to project government resources needed if AWA coverage were expanded to include them. I obtained annual RM usage data from 16 large American institutions and compared RM numbers to institutions’ legally-required reports of their AWA-covered mammals. RM comprised approximately 99.3% of mammals at these representative institutions. Extrapolating from 780,070 AWA-covered mammals in 2017–18, I estimate that 111.5 million rats and mice were used per year in this period. If the same proportion of RM undergo painful procedures as are publicly reported for AWA-covered animals, then some 44.5 million mice and rats underwent potentially painful experiments. These data inform the questions of whether the AWA needs an update to cover RM, or whether the NIH should increase transparency of funded animal research. These figures can benchmark progress in reducing animal numbers in general and more specifically, in painful experiments. This estimate is higher than any others available, reflecting the challenges of obtaining statistics without consistent and transparent institutional reports.


2021 ◽  
Author(s):  
Matthew S Binder ◽  
Zachary P Pranske ◽  
Joaquin N Lugo

Vocal communication is an essential behavior in mammals and is relevant to human neurodevelopmental conditions. Mice produce communicative vocalizations, known as ultrasonic vocalizations (USVs), that can be recorded with various programs. The Mouse Song Analyzer is an automated analysis system, while DeepSqueak is a semi-automated system. We used data from C57BL/6J, FVB.129, and FVB mice to compare whether the DeepSqueak and Mouse Song Analyzer systems measure a similar total number, duration, and fundamental frequency of USVs. We found that the two systems detected a similar quantity of USVs for FVB.129 mice (r= .90, p< .001), but displayed lower correlations for C57BL/6J (r= .76, p< .001) and FVB mice (r= .60, p< .001). We also found that DeepSqueak detected significantly more USVs for C57BL/6J mice than the Mouse Song Analyzer. The two systems detected a similar duration of USVs for C57BL/6J (r= .82, p< .001), but lower correlations for FVB.129 (r= .13, p< .001) and FVB mice (r= .51, p< .01) were found, with DeepSqueak detecting significantly more USVs per each strain. We found lower than acceptable correlations for fundamental frequency in C57BL/6J (r= .54, p< .01), FVB.129 (r= .76, p< .001), and FVB mice (r= .07, p= .76), with the Mouse Song Analyzer detecting a significantly higher fundamental frequency for FVB.129 mice. These findings demonstrate that the strain of mouse used significantly affects the number, duration, and fundamental frequency of USVs that are detected between programs. Overall, we found that DeepSqueak is more accurate than the Mouse Song Analyzer.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 90 ◽  
Author(s):  
Russ Best ◽  
Dani Temm ◽  
Holly Hucker ◽  
Kerin McDonald

This study aimed to assess the effects of repeated menthol mouth swilling upon strength and power performance. Nineteen (10 male) participants completed familiarisation and experimental trials of repeated menthol mouth swilling (0.1% concentration) or control (no swill) in a randomised crossover design. Participants performed an isometric mid-thigh pull (IMTP; peak and mean force; N), vertical jump (peak; cm) and six second sprint (peak and mean power; W) under each condition. Participants completed three efforts per exercise task interspersed with three-minute recoveries. Mean best values were analysed via a two-way mixed repeated measures ANOVA, and differences reported as effect sizes ± 95% confidence intervals, with accompanying descriptors and p values. Differences in peak IMTP values were unclear between familiarisation and experimental trials, and between menthol and control conditions. Mean IMTP force differed between familiarisation and control (0.51; −0.15 to 1.14; p = 0.001) and familiarisation and menthol conditions (0.50; −0.15 to 1.14; p = 0.002) by a small degree, but were unclear between control and menthol conditions. Unclear differences were also noted on vertical jump performance compared to familiarisation and between experimental conditions, with repeated six second peak and average power performance also showing unclear effects across all comparisons. We conclude that repeated menthol mouth swilling does not improve strength or power performance.


ILAR Journal ◽  
2020 ◽  
Author(s):  
I Joanna Makowska ◽  
Daniel M Weary

Abstract Most would agree that animals in research should be spared “unnecessary” harm, pain, or distress, and there is also growing interest in providing animals with some form of environmental enrichment. But is this the standard of care that we should aspire to? We argue that we need to work towards a higher standard—specifically, that providing research animals with a “good life” should be a prerequisite for their use. The aims of this paper are to illustrate our vision of a “good life” for laboratory rats and mice and to provide a roadmap for achieving this vision. We recognize that several research procedures are clearly incompatible with a good life but describe here what we consider to be the minimum day-to-day living conditions to be met when using rodents in research. A good life requires that animals can express a rich behavioral repertoire, use their abilities, and fulfill their potential through active engagement with their environment. In the first section, we describe how animals could be housed for these requirements to be fulfilled, from simple modifications to standard housing through to better cage designs and free-ranging options. In the second section, we review the types of interactions with laboratory rodents that are compatible with a good life. In the third section, we address the potential for the animals to have a life outside of research, including the use of pets in clinical trials (the animal-as-patient model) and the adoption of research animals to new homes when they are no longer needed in research. We conclude with a few suggestions for achieving our vision.


1979 ◽  
Vol 57 (2) ◽  
pp. 307-313 ◽  
Author(s):  
David R. Grant ◽  
Patrick T. K. Woo

Experimental infections of Giardia-free laboratory rats and mice with their respective parasites (Giardia simoni in rats and Giardia muris in mice) demonstrated that the infections persisted for the duration of the study period (4 months). Similarly, naturally infected meadow voles (with Giardia microti) and deer mice (with Giardia peromysci) retained their infections during their captivity (6 months). Rigorous precautions were taken to prevent contamination and coprophagy. The relative numbers of cysts in consecutive faecal samples varied considerably and there were periods when the numbers of cysts were extremely low. The excretions of cysts were cyclical and there were periods of 7 and 8 days between peaks in laboratory rats and mice infected with G. simoni and G. muris respectively.


2010 ◽  
Vol 37 (1) ◽  
pp. 39 ◽  
Author(s):  
Anna Gsell ◽  
John Innes ◽  
Pim de Monchy ◽  
Dianne Brunton

Context. Better techniques to detect small numbers of mammalian pests such as rodents are required both to complete large-scale eradications in restoration areas and to detect invaders before they become abundant or cause serious impacts on biodiversity. Aims. To evaluate the ability of certified rodent dogs (Canis familiaris) to locate Norway rats (Rattus norvegicus) and mice (Mus musculus) or their scent trails at very low densities in field conditions. Methods. We experimentally tested two rodent dogs by releasing small numbers of laboratory rats and mice in a 63 ha rodent-free forest sanctuary and then determining if the dogs and their handlers could find the rodents and their scent trails. We divided the enclosure into two halves, east and west of the midpoint, and alternated releases daily between the two areas to minimise residual scent between consecutive trials. Radio-tagged rats or mice were released a total of 96 times at random locations that were unknown to handlers, followed for 50–100 m, then caught and either placed in hidden cages at the end of the scent trail or removed from the forest. Handlers and their dogs had up to 6 h to search for rodents. Key Results. Despite the extremely low density of rodents in the effective research area of 32 ha, both dogs were highly successful at finding rodents, together locating 87% of rats and 80% of mice. Handlers reported few false positive detections. We found that well-trained dogs can effectively cover 30–40 ha of steep forested habitat in half a day (6 h). Conclusions. Despite the limitations of our study design, we conclude that well-trained rodent dogs may be able to locate wild rodents at low densities in forest situations. Implications. Our results support the ongoing use of certified dogs to detect rodent survivors and invaders in conservation areas in New Zealand and elsewhere. Additional research is required to trial dogs on experimentally released wild rodents and to compare the cost-effectiveness of dogs with other detection methods.


Sign in / Sign up

Export Citation Format

Share Document