scholarly journals Negative potential energy content analysis in cracked rotors whirl response

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad A. AL-Shudeifat ◽  
Fatima K. Alhammadi

AbstractAppearance of transverse cracks in rotor systems mainly affects their stiffness content. The stability of such systems at steady-state running is usually analyzed by using the Floquet’s theory. Accordingly, the instability zones of rotational speeds are dominated by negative stiffness content in the whirl response in the vicinity of critical rotational speeds. Consequently, an effective stiffness measure is introduced here to analyze the effect of the crack and the unbalance force vector orientation on the intensity of negative potential and stiffness content in the whirl response. The effective stiffness expression is obtained from the direct integration of the equations of motion of the considered cracked rotor system. The proposed effective stiffness measure is applied for steady-state and transient operations using the Jeffcott rotor model with open and breathing crack models. The intensity of negative potential and stiffness content in the numerical and experimental whirl responses is found to be critically depending on the propagation level of the crack and the unbalance force vector orientation. Therefore, this can be proposed as a crack detection tool in cracked rotor systems that either exhibit recurrent passage through the critical rotational speeds or steady-state running.

2021 ◽  
Author(s):  
Mohammad AL-Shudeifat ◽  
Fatima Alhammadi

Abstract Appearance of fatigue cracks in rotor systems mainly affects their stiffness content. The stability of such systems at steady-state running is usually analyzed by using the Floquet’s theory. Accordingly, the instability zones of rotational speeds are dominated by negative stiffness content in the whirl response in the vicinity of critical rotational speeds. Consequently, an effective stiffness measure is introduced here to analyze the effect of the crack and the unbalance force vector orientation on the intensity of negative potential and stiffness content in the whirl response. The effective stiffness expression is obtained from the direct integration of the equations of motion of the considered cracked rotor system. The proposed effective stiffness measure is applied for steady-state and transient operations using the Jeffcott rotor model with open and breathing crack models. The intensity of negative potential and stiffness content in the numerical and experimental whirl responses is found to be critically depending on the propagation level of the crack and the unbalance force vector orientation. Therefore, this can be proposed as a crack detection tool in cracked rotor systems that either exhibit recurrent passage through the critical rotational speeds or steady-state running.


Author(s):  
Mohammad A. AL-Shudeifat ◽  
Fatima K. Alhammadi

The appearance of cracks in rotor systems affects the whirl response in the neighborhood of the critical whirl rotational speeds. The combined effect of the crack depth and the unbalance force vector angle orientation with respect to the crack opening direction on the effective stiffness content of the cracked rotor system in the neighborhood of the critical rotational speed is addressed here. The effective stiffness expression of the cracked system can be obtained from the direct integration of the equations of motion of the cracked rotor system. The cracked rotor equations of motion can be expressed by the Jeffcott rotor or the finite element models. The appearance of cracks in rotor systems converts them into parametrically excited dynamical systems with time-periodic stiffness components. The interaction between the time-periodic stiffness and the external periodic forcing function of the unbalance force significantly alters the effective stiffness content in the system at both transient and steady state operations. For wide range of crack depths and unbalance force vector angles, the effective stiffness has been found to be of negative values. This means that the cracked rotor system tends to have more resistance to deflect towards the center of its whirl orbit and less resistance to deflect away under the unbalance force excitation effect. Consequently, in the negative stiffness content zone of the unbalance force vector angles, the cracked rotor system tends to exhibit a sharp growth in the vibration whirl amplitudes. However, for positive effective stiffness values, the shaft has more resistance to deflect away from its whirl orbit center. Therefore, the cracked rotor system is at higher risk of failure in the negative effective stiffness zone of unbalance force vector angles than the positive effective stiffness zone of these angles.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Mohammad A. AL-Shudeifat ◽  
Hanan Al Hosani ◽  
Adnan S. Saeed ◽  
Shadi Balawi

The combined effect of a crack with unbalanced force vector orientation in cracked rotor-bearing-disk systems on the values and locations of critical whirl amplitudes is numerically and experimentally investigated here for starting up operations. The time-periodic equations of motion of the cracked system are formulated according to the finite element (FE) time-varying stiffness matrix. The whirl response during the passage through the critical whirl speed zone is obtained via numerical simulation for different angles of the unbalance force vector. It is found that the variations in the angle of unbalance force vector with respect to the crack opening direction significantly alters the peak values of the critical whirl amplitudes and their corresponding critical whirl speeds. Consequently, the critical speeds of the cracked rotor are found to be either shifted to higher or lower values depending on the unbalance force vector orientation. In addition, the peak whirl amplitudes are found to exhibit significant elevation in some zones of unbalance force angles whereas significant reduction is observed in the remaining zones compared with the crack-free case. One of the important findings is that there exists a specific value of the unbalance force angle at which the critical whirl vibration is nearly eliminated in the cracked system compared with the crack-free case. These all significant numerical and experimental observations can be employed for crack damage detection in rotor systems.


Author(s):  
Ayesha Al Mehairi ◽  
Mohammad A. AL-Shudeifat ◽  
Shadi Balawi ◽  
Adnan S. Saeed

The application of the proper orthogonal decomposition (POD) method to the vibration response of a cracked Jeffcott rotor model is investigated here. The covariance matrices of horizontal and vertical whirl amplitudes are formulated based on the numerical integration response and the experimental whirl response, respectively, for the considered cracked rotor system. Accordingly, the POD is directly applied to the obtained covariance matrices of the numerical and experimental whirl amplitudes where the proper orthogonal values (POVs) and the proper orthogonal modes (POMs) are obtained for various crack depths, unbalance force vector angles and rotational speeds. It is observed that both POVs and their corresponding POMs are highly sensitive to the appearance of the crack and the unbalance angle changes at the neighborhoods of the critical. The sensitivity zones of the POVs and POMs to the crack propagation coincide with the unstable zones of the cracked system obtained by Floquets theory.


Author(s):  
Hanan Al Hosani ◽  
Mohammad A. AL-Shudeifat ◽  
Adnan S. Saeed ◽  
Shadi Balawi

The combined effect of the crack and the unbalance force vector angle on the values and locations of the whirl amplitudes at the critical whirl speeds for a cracked rotor-bearing-disk system is numerically and experimentally investigated here. The strongly nonlinear time-periodic equations of motion, which are analogous to Mathieus equation, of the cracked system with an open crack model are formulated according to the finite element time-periodic stiffness matrix. The whirl response during the passage through the critical speeds is obtained via numerical simulation for different unbalance vector angles with respect to the crack opening direction. It is found that the variation in the unbalance force vector angle with respect to the crack opening direction significantly alters the peaks of the critical whirl amplitudes and their corresponding critical whirl speeds. Consequently, the critical speeds of the cracked rotor are either shifted to higher or lower values according to the unbalance force vector angle value. These significant numerical simulation observations are also verified via robust experimental results.


Author(s):  
ZY Qin ◽  
QK Han ◽  
FL Chu

Bolted joints are widely used in aero-engines. One of the common applications is to connect the rotor disks and drums. An analytical model for the bending stiffness of the bolted disk–drum joints is developed. The joint stiffness calculated using the analytical model shows sound agreement with the calculation obtained based on finite element analyses. The joint stiffness model is then implemented into the dynamic model of a simple rotor connected through the bolted disk–drum joint. Finally, the whirling characteristics and steady-state response of the jointed rotor are investigated to evaluate the influence of the joint on the rotor dynamics, where the harmonic balance method is employed to calculate the steady-state response to unbalance force. The simulation results show that the joint influence on the whirling characteristics of the rotor system can be neglected; whereas, the presence of the bolted disk–drum joint may lead to a decrease in the rotor critical speeds due to the softening of the joint stiffness. The proposed analytical model for the bolted disk–drum joints can be adopted conveniently for different types of rotor systems connected by bolted disk–drum joints.


Author(s):  
Graziano Curti ◽  
Francesco A. Raffa ◽  
Furio Vatta

Abstract An analytical investigation of the steady-state unbalance response of axisymmetric rotor systems with anisotropic, flexible and damped bearings is presented. According to the exact approach of the dynamic stiffness method, the rotor is modelled by means of continuous beam elements. In this work, the expression of the 8 × 8 dynamic stiffness matrix of a rotating Timoshenko beam is derived and it is shown that it is related, by means of a simple law, to the previously published 4 × 4 dynamic stiffness matrix, which holds for the isotropic bearings case. The effects of concentrated disks and bearings are included into the formulation; in particular, each bearing is described by eight constant coefficients, according to the well-known linearized model of the bearing forces. The unbalance response of a typical rotor system taken from the literature is analyzed. A comparison is presented with the finite element results reported by other authors.


Author(s):  
G. Meng ◽  
Eric J. Hahn

By considering time dependent terms as external excitation forces, the approximate dynamic response of a cracked horizontal rotor is analysed theoretically and numerically. The solution is good for small cracks and small vibrations in the stable operating range. For each steady state harmonic component the forward and backward whirl amplitudes, the shape and orientation of the elliptic orbit and the amplitude and phase of the response signals arc analysed, taking into account the effect of crack size, crack location, rotor speed and unbalance. It is found that the crack causes backward whirl, the amplitude of which increases with the crack. For a cracked rotor, the response orbit for each harmonic component is an ellipse, the shape and orientation of which depends on the crack size. The influence of the crack on the synchronous response of the system can be regarded as an additional unbalance whereupon, depending on the speed and the crack location, the response amplitude differs from that of the uncracked rotor. The nonsynchronous response provides evidence of crack in the sub-critical range, but is too small to be detected in the supercritical range. Possibilities for crack detection over the full speed range include the additional average (the constant) response component, the backward whirl of the response, the ellipticity of the orbit, the angle between the major axis and the vertical axis and the phase angle difference between vertical and horizontal vibration signals.


Author(s):  
Mohammad A. AL-Shudeifat ◽  
Eric A. Butcher

The modeling of a cracked rotor system with an open or breathing transverse crack is addressed here. The cracked rotor with an open crack model behaves as an asymmetric shaft. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix for both crack models which yields a linear time-periodic system. The harmonic balance method (HB) is used in solving the finite element (FE) equations of motions for studying the dynamic behavior of the cracked rotor system. The unique behavior of the whirl orbits during the passage through the subcritical rotational speeds and the sensitivity of these orbits to the unbalance force direction can be used for early crack detection of the cracked rotor for both crack models. These whirl orbits were verified experimentally for the open crack model in the neighborhood of 1/2 of the first critical rotational speed where a good match with the theoretical whirl orbits was observed.


1997 ◽  
Vol 119 (2) ◽  
pp. 447-455 ◽  
Author(s):  
G. Meng ◽  
E. J. Hahn

By considering time-dependent terms as external excitation forces, the approximate dynamic response of a cracked horizontal rotor is analyzed theoretically and numerically. The solution is good for small cracks and small vibrations in the stable operating range. For each steady-state harmonic component, the forward and backward whirl amplitudes, the shape and orientation of the elliptic orbit, and the amplitude and phase of the response signals are analyzed, taking into account the effect of crack size, crack location, rotor speed, and unbalance. It is found that the crack causes backward whirl, the amplitude of which increases with the crack. For a cracked rotor, the response orbit for each harmonic component is an ellipse, the shape and orientation of which depend on the crack size. The influence of the crack on the synchronous response of the system can be regarded as an additional unbalance whereupon, depending on the speed and the crack location, the response amplitude differs from that of the uncracked rotor. The nonsynchronous response provides evidence of crack in the subcritical range, but is too small to be detected in the supercritical range. Possibilities for crack detection over the full-speed range include the additional average (the constant) response component, the backward whirl of the response, the ellipticity of the orbit, the angle between the major axis and the vertical axis, and the phase angle difference between vertical and horizontal vibration signals.


Sign in / Sign up

Export Citation Format

Share Document